【机器学习】044_Kaggle房价预测(机器学习模型实战)

参考自《动手学深度学习》中“Kaggle比赛实战:预测房价”一节

一、数据准备

首先从网站上下载要获取的房价数据。

DATA_HUB是一个字典,用来将数据集名称的字符串和数据集相关的二元组一一对应。

二元组包含两个值:数据集的URL和用来验证文件完整性的sha-1密钥。

※所有数据都托管在地址为DATA_URL的网站上。

获取数据的代码如下:

import hashlib
import os
import tarfile
import zipfile
import requests#@save
DATA_HUB = dict()
DATA_URL = 'http://d2l-data.s3-accelerate.amazonaws.com/'# 下载数据集并缓存到本地文件目录中
# 函数download()接受两个参数:name(要下载的数据集的名称)和cache_dir(缓存目录的路径)
def download(name, cache_dir=os.path.join('..', 'Kaggle_Data')):  #@save"""下载一个DATA_HUB中的文件,返回本地文件名"""# 检查name是否在DATA_HUB字典中存在assert name in DATA_HUB, f"{name} 不存在于 {DATA_HUB}"url, sha1_hash = DATA_HUB[name]os.makedirs(cache_dir, exist_ok=True)fname = os.path.join(cache_dir, url.split('/')[-1])if os.path.exists(fname):sha1 = hashlib.sha1()with open(fname, 'rb') as f:while True:data = f.read(1048576)if not data:breaksha1.update(data)if sha1.hexdigest() == sha1_hash:return fname  # 命中缓存print(f'正在从{url}下载{fname}...')r = requests.get(url, stream=True, verify=True)with open(fname, 'wb') as f:f.write(r.content)return fnamedef download_extract(name, folder=None):  #@save"""下载并解压zip/tar文件"""fname = download(name)base_dir = os.path.dirname(fname)data_dir, ext = os.path.splitext(fname)if ext == '.zip':fp = zipfile.ZipFile(fname, 'r')elif ext in ('.tar', '.gz'):fp = tarfile.open(fname, 'r')else:assert False, '只有zip/tar文件可以被解压缩'fp.extractall(base_dir)return os.path.join(base_dir, folder) if folder else data_dirdef download_all():  #@save"""下载DATA_HUB中的所有文件"""for name in DATA_HUB:download(name)

二、读取数据

使用pandas分别加载两个CSV文件,读取文件内数据。

%matplotlib inline
import numpy as np
import pandas as pd
import torch
from torch import nn
from d2l import torch as d2lDATA_HUB['kaggle_house_train'] = (  #@saveDATA_URL + 'kaggle_house_pred_train.csv','585e9cc93e70b39160e7921475f9bcd7d31219ce')DATA_HUB['kaggle_house_test'] = (  #@saveDATA_URL + 'kaggle_house_pred_test.csv','fa19780a7b011d9b009e8bff8e99922a8ee2eb90')# 加载提供的测试集和数据集
train_data = pd.read_csv(download('kaggle_house_train'))
test_data = pd.read_csv(download('kaggle_house_test'))# 打印训练集和测试集数据的情况,得到其样本数与特征值的数量
print(train_data.shape)
print(test_data.shape)
# 打印前四个和最后一个特征,以及相应标签(房价)
print(train_data.iloc[0:4, [0, 1, 2, 3, -3, -2, -1]])

三、数据预处理

在对数据进行预处理时,首先要针对缺失值进行操作,将所有缺失值替换为相应特征的平均值。

然后对数据进行标准化,将所有数据样本标准化到同一个分布上,将特征重新缩放:均值为0,方差为单位方差。

标准化形式如下所示:

标准化后,用样本均值来填充缺失数据。由于样本均值为0,故用0填补缺失值。

# 若无法获得测试数据,则可根据训练数据计算均值和标准差
numeric_features = all_features.dtypes[all_features.dtypes != 'object'].index
all_features[numeric_features] = all_features[numeric_features].apply(lambda x: (x - x.mean()) / (x.std()))
# 在标准化数据之后,所有均值消失,因此我们可以将缺失值设置为0
all_features[numeric_features] = all_features[numeric_features].fillna(0)

接下来处理离散值。

使用独热编码(One-Hot Encoding)处理分类型(分类)数据,将每个类别都转换成一个单独的列,并用 0 和 1 来表示每个样本是否属于该类别。

如果设置 dummy_na=True,那么还会为每个分类变量中的缺失值(NaN)创建一个额外的列。在这个额外的列中,如果原始数据集中的样本在该分类变量上的值是缺失的,那么在这个新列中为该样本赋值 1,否则赋值 0。

# “Dummy_na=True”将“na”(缺失值)视为有效的特征值,并为其创建指示符特征
all_features = pd.get_dummies(all_features, dummy_na=True)
all_features.shape# 再次检查all_features中是否存在NAN数据,将其记为0
non_numeric_columns = all_features.select_dtypes(exclude=[np.number]).columns
print(non_numeric_columns)for column in non_numeric_columns:all_features[column] = all_features[column].astype(float)all_features = all_features.fillna(0)

最后,通过value属性,可以将pandas格式的数据提取为numpy格式,将其转化为张量。

n_train = train_data.shape[0]
train_features = torch.tensor(all_features[:n_train].values, dtype=torch.float32)
test_features = torch.tensor(all_features[n_train:].values, dtype=torch.float32)
train_labels = torch.tensor(train_data.SalePrice.values.reshape(-1, 1), dtype=torch.float32)

四、训练模型

训练一个带有损失函数的线性模型。线性模型较为简单,可作为基线模型,后续可以加之以改进。

· MSELoss()表示均方损失函数

· in_features表示输入值,其个数(大小)和特征值的数目相同,也就是train_features的第一维

· 定义全连接层Linear层,输入为in_features,输出为一个数。

loss = nn.MSELoss()
in_features = train_features.shape[1]def get_net():net = nn.Sequential(nn.Linear(in_features,1))return net

房价就像股票价格一样,相对误差\frac{y-\widehat{y}}{y}的重要性大于绝对误差y-\widehat{y}

> 例如,如果我们在俄亥俄州农村地区估计一栋房子的价格时, 假设我们的预测偏差了10万美元, 然而那里一栋典型的房子的价值是12.5万美元, 那么模型可能做得很糟糕。 另一方面,如果我们在加州豪宅区的预测出现同样的10万美元的偏差, (在那里,房价中位数超过400万美元) 这可能是一个不错的预测。

用价格预测的对数来衡量差异。预测价格的对数与真实标签价格的对数之间出现以下均方根误差:

log_rmse()函数对神经网络做出一个对数相对误差计算,返回一个误差值。

这个误差值可用来衡量模型的精度。

def log_rmse(net, features, labels):# 为了在取对数时进一步稳定该值,将小于1的值设置为1clipped_preds = torch.clamp(net(features), 1, float('inf'))rmse = torch.sqrt(loss(torch.log(clipped_preds),torch.log(labels)))return rmse.item()

借助Adam算法训练模型参数。Adam算法即自适应时刻估计方法(Adaptive Moment Estimation),能计算每个参数的自适应学习率。不仅存储了AdaDelta先前平方梯度的指数衰减平均值,而且保持了先前梯度M(t)的指数衰减平均值。

· train_ls、test_ls两个数组用来存储训练损失和测试损失。

· 使用torch里的函数创建好迭代器访问训练数据集的特征与标签。

· 定义Adam优化器。

· 执行迭代,每次迭代先清除上一次迭代的梯度,使用net(X)获取预测结果,然后用loss()计算损失l,用l进行反向传播,更新梯度与模型参数。在每次迭代结束后,用对数损失计算函数计算训练集和测试集上的对数误差,然后将误差结果添加到数组里。

· 返回误差结果。

def train(net, train_features, train_labels, test_features, test_labels,num_epochs, learning_rate, weight_decay, batch_size):train_ls, test_ls = [], []train_iter = d2l.load_array((train_features, train_labels), batch_size)# 这里使用的是Adam优化算法optimizer = torch.optim.Adam(net.parameters(),lr = learning_rate,weight_decay = weight_decay)for epoch in range(num_epochs):for X, y in train_iter:optimizer.zero_grad()l = loss(net(X), y)l.backward()optimizer.step()train_ls.append(log_rmse(net, train_features, train_labels))if test_labels is not None:test_ls.append(log_rmse(net, test_features, test_labels))return train_ls, test_ls

五、K则交叉验证

利用K则交叉验证来评估模型的性能。通过K则交叉验证在不同折上的不同表现,以及比较模型对训练集和测试集上的误差,可以确定模型遇到的一些问题,确定其是否遇到欠拟合或过拟合。

  • 如果多数折中模型在训练集上的误差明显低于验证集,这表明过拟合。
  • 如果在多数折中模型在训练集和验证集上的误差都很高,这表明欠拟合。

另外,K则交叉验证也可辅助进行参数调优。准备好不同的超参数组合,各自在K则交叉验证上验证模型的效果,并选择效果最好的那个组合。使用选定的最优超参数,在所有可用的训练数据上重新训练模型,构建最终模型。

例:假设正在训练一个神经网络,并想确定最佳的学习率和批量大小。可以定义一个参数空间,如学习率 = [0.01, 0.001, 0.0001] 和批量大小 = [16, 32, 64]。对于这个参数空间中的每个组合(共9种),使用k折交叉验证来评估模型性能,然后选择平均性能最佳的组合。

def get_k_fold_data(k, i, X, y):assert k > 1fold_size = X.shape[0] // kX_train, y_train = None, Nonefor j in range(k):idx = slice(j * fold_size, (j + 1) * fold_size)X_part, y_part = X[idx, :], y[idx]if j == i:X_valid, y_valid = X_part, y_partelif X_train is None:X_train, y_train = X_part, y_partelse:X_train = torch.cat([X_train, X_part], 0)y_train = torch.cat([y_train, y_part], 0)return X_train, y_train, X_valid, y_valid
def k_fold(k, X_train, y_train, num_epochs, learning_rate, weight_decay,batch_size):train_l_sum, valid_l_sum = 0, 0for i in range(k):data = get_k_fold_data(k, i, X_train, y_train)net = get_net()train_ls, valid_ls = train(net, *data, num_epochs, learning_rate,weight_decay, batch_size)train_l_sum += train_ls[-1]valid_l_sum += valid_ls[-1]if i == 0:d2l.plot(list(range(1, num_epochs + 1)), [train_ls, valid_ls],xlabel='epoch', ylabel='rmse', xlim=[1, num_epochs],legend=['train', 'valid'], yscale='log')print(f'折{i + 1},训练log rmse{float(train_ls[-1]):f}, 'f'验证log rmse{float(valid_ls[-1]):f}')return train_l_sum / k, valid_l_sum / k
k, num_epochs, lr, weight_decay, batch_size = 5, 100, 5, 0, 64
train_l, valid_l = k_fold(k, train_features, train_labels, num_epochs, lr,weight_decay, batch_size)
print(f'{k}-折验证: 平均训练log rmse: {float(train_l):f}, 'f'平均验证log rmse: {float(valid_l):f}')

最终呈现的验证效果:

六、预测结果

· 定义net为之前定义好的神经网络层。

· 调用train()函数获取训练误差,并绘制图像呈现训练误差的效果。

· 模型训练好后,使用训练好的模型对测试集进行预测,并将结果从Pytorch张量转化为Numpy数组,保存到preds里。

· 将预测结果preds添加到test_data这个DataFrame变量中的SalePrice列里。

※pd.Series(preds.reshape(1,-1)[0])表示将preds转化为一行n列(-1表示根据总元素数量自动确定)的Numpy数组,再将第1行也就是这个数组全部元素转化为Series类型变量,以便添加到test_data的列中去。

· 合并Id列和SalePrice列,将其保存为CSV文件。

def train_and_pred(train_features, test_features, train_labels, test_data,num_epochs, lr, weight_decay, batch_size):net = get_net()train_ls, _ = train(net, train_features, train_labels, None, None,num_epochs, lr, weight_decay, batch_size)d2l.plot(np.arange(1, num_epochs + 1), [train_ls], xlabel='epoch',ylabel='log rmse', xlim=[1, num_epochs], yscale='log')print(f'训练log rmse:{float(train_ls[-1]):f}')# 将网络应用于测试集。preds = net(test_features).detach().numpy()# 将其重新格式化以导出到Kaggletest_data['SalePrice'] = pd.Series(preds.reshape(1, -1)[0])submission = pd.concat([test_data['Id'], test_data['SalePrice']], axis=1)submission.to_csv('submission.csv', index=False)
train_and_pred(train_features, test_features, train_labels, test_data,num_epochs, lr, weight_decay, batch_size)

最终呈现的模型效果:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/227101.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

python实现最小二叉堆---最小堆结构

#来源于MOOC学习以及数据结构与算法分析# 在我们学习最小二叉堆代码实现之前,我们需要去了解一下,什么是最小二叉堆(也有最大二叉堆,也叫最大堆)。 也就是说什么是二叉堆???&#…

HiveSql语法优化三 :join优化

前面提到过:Hive拥有多种join算法,包括Common Join,Map Join,Bucket Map Join,Sort Merge Buckt Map Join等;每种join算法都有对应的优化方案。 Map Join 在优化阶段,如果能将Common Join优化为…

Linux 中的网站服务管理

目录 1.安装服务 2.启动服务 3.停止服务 4.重启服务 5.开机自启 6.案例 1.安装服务 网址服务程序 yum insatll httpd -y 查看所有服务 systemctl list-unit-files 2.启动服务 systemctl start httpd 查看服务进程,确认是否启动 ps -ef|grep httpd 3.停止…

python分析数据出现Text input context does not respond to _valueForTIProperty错误

一开始运行脚本还是不报错的,脚本内容部分如下: 出现了如下的效果图: 后面隔了几天再次运行居然报错了,如下图所示,但是也没有更改代码啊。后来发现原来是输入法导致的,把输入法切换成英文状态就不报错啦。…

linux下sys目录与proc目录的作用

sys目录作用 在Linux系统中,/sys目录是一个特殊的虚拟文件系统(sysfs),用于提供对内核和设备的运行时信息的访问。它是在内核中运行的驱动程序和子系统的接口,可以用于获取和配置系统的硬件和内核信息。 以下是/sys目…

条件分布律

设是二维离散型随机变量,对于固定的,若,则称 , 其中 为在条件下随机变量的条件分布律。 对于固定的,若,则称 , 其中 为在条件下随机变量的条件分布律。

内网穿透工具,如何保障安全远程访问?

内网穿透工具是一种常见的技术手段,用于在没有公网IP的情况下将本地局域网服务映射至外网。这种工具的使用极大地方便了开发人员和网络管理员,使得他们能够快速建立起本地服务与外部网络之间的通信渠道。然而,在享受高效快捷的同时&#xff0…

C语言之函数设计(1)

目录 没有返回值的函数 通用性 不含形参的函数 函数返回值的初始化 作用域 文件作用域 声明和定义 函数原型声明 头文件和文件包含指令 在上节中我们简单的学习了函数的创建方法(函数定义)与函数的使用方法(函数调用)&…

现代雷达车载应用——第2章 汽车雷达系统原理 2.2节 汽车雷达架构

经典著作,值得一读,英文原版下载链接【免费】ModernRadarforAutomotiveApplications资源-CSDN文库。 2.2 汽车雷达架构 从顶层来看,基本的汽车雷达由发射器,接收器和天线组成。图2.2给出了一种简化的单通道连续波雷达结构[2]。这…

Doris集群搭建——2.0.1.1版本

目录 一、启动Doris 二、配置并分发doris安装包和环境变量 1.分发doris安装包 2.解压安装包 3.分发环境变量 4.修改对应的配置文件 (1)修改be的配置 (2)修改fe的配置 三、be的扩容与缩容 (一)be扩容 1.添加be节点 3.另外两个节点启动be 4.重新查看be节点状态 (二…

数据可视化?这些平台能处

图表在各行各业都起到举重若轻的作用,无论是项目汇报、业绩分析,亦或是数据挖掘、统计分析,良好的可视化可以为我们的阐述起到画龙点睛的效果。在一篇文章中,如果只有密密麻麻的文字堆积,无论是谁恐怕都无法长期保持注…

如何预防最新的.locked、.locked1勒索病毒感染您的计算机?

尊敬的读者: 近期,网络安全领域迎来一股新潮——.locked、.locked1勒索病毒的威胁,其先进的加密技术令人生畏。本文将深入剖析.locked、.locked1勒索病毒的阴谋,提供特色数据恢复策略,并揭示锁定恶劣行径的先锋预防手…

RK3568平台(网络篇)添加网络交换芯片RTL8306M

一.硬件原理图 分析: 该交换芯片支持I2C、SPI、mdio通信,但是看ast1520的uboot代码采用的是mdio去通信phy芯片的,所以暂时也先采用mdio的方式,需要配置相应的引脚才可以配置成mdio通信模式,具体的配置硬件工程师解决。…

使用netcore编写对比excel差异

一、新建项目Vlook项目 using MiniExcelLibs; using System; using System.Collections.Generic; using System.ComponentModel.DataAnnotations; using System.Data; using System.IO;namespace Vlook {internal class Program{static void Main(string[] args){var dir App…

L1-046:整除光棍

题目描述 这里所谓的“光棍”,并不是指单身汪啦~ 说的是全部由1组成的数字,比如1、11、111、1111等。传说任何一个光棍都能被一个不以5结尾的奇数整除。比如,111111就可以被13整除。 现在,你的程序要读入一个整数x,这个…

通义千问关于网络模块的专业知识能力正确率测试

闲着无聊,就用问答区的一个问题,去考验了通义千问,结果优点出乎意料。 我们来看一下具体的问题,这里,我准备了三个问题: 第一个问题:11.192.0.x 注意,这里我并没有增加任何的辅助提…

关于文件操作---C语言

引言 关于文件,想必大家或多或少都会有些了解,文件可以帮我们储存数据,不同格式的文件可以储存不同类型的数据,也可以将文件中的数据用不同的方式打开。电脑中的文件,是放在硬盘上的。在我们编写代码并运行的时候&…

金蝶云星空表单插件获取复选框的值

文章目录 金蝶云星空表单插件获取复选框的值 金蝶云星空表单插件获取复选框的值 object getPur this.View.Model.GetValue("F_XHWT_IsPur", rowIndexV);bool isSerial !Convert.ToBoolean(itemClose["F_XHWT_IsPur"] "");取得值可以直接转换成…

Datawhale聪明办法学Python(task3变量与函数)

一、课程基本结构 课程开源地址:课程简介 - 聪明办法学 Python 第二版 章节结构: Chapter 0 安装 Installation Chapter 1 启航 Getting Started Chapter 2 数据类型和操作 Data Types and Operators Chapter 3 变量与函数 Variables and Functions Ch…

Cortex-M4内核结构

Cortex-M4内核结构 1. 内核Core 2. 三阶流水线 3. 内核工作模式 4. 总结 Cortex-M4内核结构 Cortex-M4处理器是ARMv7-M架构的一种实现,它是一种32位精简指令集(Reduced Instruction Set Computing, RISC)的处理器,有一个三阶的指令流水线,依…