参考自《动手学深度学习》中“Kaggle比赛实战:预测房价”一节
一、数据准备
首先从网站上下载要获取的房价数据。
DATA_HUB是一个字典,用来将数据集名称的字符串和数据集相关的二元组一一对应。
二元组包含两个值:数据集的URL和用来验证文件完整性的sha-1密钥。
※所有数据都托管在地址为DATA_URL的网站上。
获取数据的代码如下:
import hashlib
import os
import tarfile
import zipfile
import requests#@save
DATA_HUB = dict()
DATA_URL = 'http://d2l-data.s3-accelerate.amazonaws.com/'# 下载数据集并缓存到本地文件目录中
# 函数download()接受两个参数:name(要下载的数据集的名称)和cache_dir(缓存目录的路径)
def download(name, cache_dir=os.path.join('..', 'Kaggle_Data')): #@save"""下载一个DATA_HUB中的文件,返回本地文件名"""# 检查name是否在DATA_HUB字典中存在assert name in DATA_HUB, f"{name} 不存在于 {DATA_HUB}"url, sha1_hash = DATA_HUB[name]os.makedirs(cache_dir, exist_ok=True)fname = os.path.join(cache_dir, url.split('/')[-1])if os.path.exists(fname):sha1 = hashlib.sha1()with open(fname, 'rb') as f:while True:data = f.read(1048576)if not data:breaksha1.update(data)if sha1.hexdigest() == sha1_hash:return fname # 命中缓存print(f'正在从{url}下载{fname}...')r = requests.get(url, stream=True, verify=True)with open(fname, 'wb') as f:f.write(r.content)return fnamedef download_extract(name, folder=None): #@save"""下载并解压zip/tar文件"""fname = download(name)base_dir = os.path.dirname(fname)data_dir, ext = os.path.splitext(fname)if ext == '.zip':fp = zipfile.ZipFile(fname, 'r')elif ext in ('.tar', '.gz'):fp = tarfile.open(fname, 'r')else:assert False, '只有zip/tar文件可以被解压缩'fp.extractall(base_dir)return os.path.join(base_dir, folder) if folder else data_dirdef download_all(): #@save"""下载DATA_HUB中的所有文件"""for name in DATA_HUB:download(name)
二、读取数据
使用pandas分别加载两个CSV文件,读取文件内数据。
%matplotlib inline
import numpy as np
import pandas as pd
import torch
from torch import nn
from d2l import torch as d2lDATA_HUB['kaggle_house_train'] = ( #@saveDATA_URL + 'kaggle_house_pred_train.csv','585e9cc93e70b39160e7921475f9bcd7d31219ce')DATA_HUB['kaggle_house_test'] = ( #@saveDATA_URL + 'kaggle_house_pred_test.csv','fa19780a7b011d9b009e8bff8e99922a8ee2eb90')# 加载提供的测试集和数据集
train_data = pd.read_csv(download('kaggle_house_train'))
test_data = pd.read_csv(download('kaggle_house_test'))# 打印训练集和测试集数据的情况,得到其样本数与特征值的数量
print(train_data.shape)
print(test_data.shape)
# 打印前四个和最后一个特征,以及相应标签(房价)
print(train_data.iloc[0:4, [0, 1, 2, 3, -3, -2, -1]])
三、数据预处理
在对数据进行预处理时,首先要针对缺失值进行操作,将所有缺失值替换为相应特征的平均值。
然后对数据进行标准化,将所有数据样本标准化到同一个分布上,将特征重新缩放:均值为0,方差为单位方差。
标准化形式如下所示:
标准化后,用样本均值来填充缺失数据。由于样本均值为0,故用0填补缺失值。
# 若无法获得测试数据,则可根据训练数据计算均值和标准差
numeric_features = all_features.dtypes[all_features.dtypes != 'object'].index
all_features[numeric_features] = all_features[numeric_features].apply(lambda x: (x - x.mean()) / (x.std()))
# 在标准化数据之后,所有均值消失,因此我们可以将缺失值设置为0
all_features[numeric_features] = all_features[numeric_features].fillna(0)
接下来处理离散值。
使用独热编码(One-Hot Encoding)处理分类型(分类)数据,将每个类别都转换成一个单独的列,并用 0 和 1 来表示每个样本是否属于该类别。
如果设置 dummy_na=True,
那么还会为每个分类变量中的缺失值(NaN
)创建一个额外的列。在这个额外的列中,如果原始数据集中的样本在该分类变量上的值是缺失的,那么在这个新列中为该样本赋值 1,否则赋值 0。
# “Dummy_na=True”将“na”(缺失值)视为有效的特征值,并为其创建指示符特征
all_features = pd.get_dummies(all_features, dummy_na=True)
all_features.shape# 再次检查all_features中是否存在NAN数据,将其记为0
non_numeric_columns = all_features.select_dtypes(exclude=[np.number]).columns
print(non_numeric_columns)for column in non_numeric_columns:all_features[column] = all_features[column].astype(float)all_features = all_features.fillna(0)
最后,通过value属性,可以将pandas格式的数据提取为numpy格式,将其转化为张量。
n_train = train_data.shape[0]
train_features = torch.tensor(all_features[:n_train].values, dtype=torch.float32)
test_features = torch.tensor(all_features[n_train:].values, dtype=torch.float32)
train_labels = torch.tensor(train_data.SalePrice.values.reshape(-1, 1), dtype=torch.float32)
四、训练模型
训练一个带有损失函数的线性模型。线性模型较为简单,可作为基线模型,后续可以加之以改进。
· MSELoss()表示均方损失函数
· in_features表示输入值,其个数(大小)和特征值的数目相同,也就是train_features的第一维
· 定义全连接层Linear层,输入为in_features,输出为一个数。
loss = nn.MSELoss()
in_features = train_features.shape[1]def get_net():net = nn.Sequential(nn.Linear(in_features,1))return net
房价就像股票价格一样,相对误差的重要性大于绝对误差。
> 例如,如果我们在俄亥俄州农村地区估计一栋房子的价格时, 假设我们的预测偏差了10万美元, 然而那里一栋典型的房子的价值是12.5万美元, 那么模型可能做得很糟糕。 另一方面,如果我们在加州豪宅区的预测出现同样的10万美元的偏差, (在那里,房价中位数超过400万美元) 这可能是一个不错的预测。
用价格预测的对数来衡量差异。预测价格的对数与真实标签价格的对数之间出现以下均方根误差:
log_rmse()函数对神经网络做出一个对数相对误差计算,返回一个误差值。
这个误差值可用来衡量模型的精度。
def log_rmse(net, features, labels):# 为了在取对数时进一步稳定该值,将小于1的值设置为1clipped_preds = torch.clamp(net(features), 1, float('inf'))rmse = torch.sqrt(loss(torch.log(clipped_preds),torch.log(labels)))return rmse.item()
借助Adam算法训练模型参数。Adam算法即自适应时刻估计方法(Adaptive Moment Estimation),能计算每个参数的自适应学习率。不仅存储了AdaDelta先前平方梯度的指数衰减平均值,而且保持了先前梯度M(t)的指数衰减平均值。
· train_ls、test_ls两个数组用来存储训练损失和测试损失。
· 使用torch里的函数创建好迭代器访问训练数据集的特征与标签。
· 定义Adam优化器。
· 执行迭代,每次迭代先清除上一次迭代的梯度,使用net(X)获取预测结果,然后用loss()计算损失l,用l进行反向传播,更新梯度与模型参数。在每次迭代结束后,用对数损失计算函数计算训练集和测试集上的对数误差,然后将误差结果添加到数组里。
· 返回误差结果。
def train(net, train_features, train_labels, test_features, test_labels,num_epochs, learning_rate, weight_decay, batch_size):train_ls, test_ls = [], []train_iter = d2l.load_array((train_features, train_labels), batch_size)# 这里使用的是Adam优化算法optimizer = torch.optim.Adam(net.parameters(),lr = learning_rate,weight_decay = weight_decay)for epoch in range(num_epochs):for X, y in train_iter:optimizer.zero_grad()l = loss(net(X), y)l.backward()optimizer.step()train_ls.append(log_rmse(net, train_features, train_labels))if test_labels is not None:test_ls.append(log_rmse(net, test_features, test_labels))return train_ls, test_ls
五、K则交叉验证
利用K则交叉验证来评估模型的性能。通过K则交叉验证在不同折上的不同表现,以及比较模型对训练集和测试集上的误差,可以确定模型遇到的一些问题,确定其是否遇到欠拟合或过拟合。
- 如果多数折中模型在训练集上的误差明显低于验证集,这表明过拟合。
- 如果在多数折中模型在训练集和验证集上的误差都很高,这表明欠拟合。
另外,K则交叉验证也可辅助进行参数调优。准备好不同的超参数组合,各自在K则交叉验证上验证模型的效果,并选择效果最好的那个组合。使用选定的最优超参数,在所有可用的训练数据上重新训练模型,构建最终模型。
例:假设正在训练一个神经网络,并想确定最佳的学习率和批量大小。可以定义一个参数空间,如学习率 = [0.01, 0.001, 0.0001] 和批量大小 = [16, 32, 64]。对于这个参数空间中的每个组合(共9种),使用k折交叉验证来评估模型性能,然后选择平均性能最佳的组合。
def get_k_fold_data(k, i, X, y):assert k > 1fold_size = X.shape[0] // kX_train, y_train = None, Nonefor j in range(k):idx = slice(j * fold_size, (j + 1) * fold_size)X_part, y_part = X[idx, :], y[idx]if j == i:X_valid, y_valid = X_part, y_partelif X_train is None:X_train, y_train = X_part, y_partelse:X_train = torch.cat([X_train, X_part], 0)y_train = torch.cat([y_train, y_part], 0)return X_train, y_train, X_valid, y_valid
def k_fold(k, X_train, y_train, num_epochs, learning_rate, weight_decay,batch_size):train_l_sum, valid_l_sum = 0, 0for i in range(k):data = get_k_fold_data(k, i, X_train, y_train)net = get_net()train_ls, valid_ls = train(net, *data, num_epochs, learning_rate,weight_decay, batch_size)train_l_sum += train_ls[-1]valid_l_sum += valid_ls[-1]if i == 0:d2l.plot(list(range(1, num_epochs + 1)), [train_ls, valid_ls],xlabel='epoch', ylabel='rmse', xlim=[1, num_epochs],legend=['train', 'valid'], yscale='log')print(f'折{i + 1},训练log rmse{float(train_ls[-1]):f}, 'f'验证log rmse{float(valid_ls[-1]):f}')return train_l_sum / k, valid_l_sum / k
k, num_epochs, lr, weight_decay, batch_size = 5, 100, 5, 0, 64
train_l, valid_l = k_fold(k, train_features, train_labels, num_epochs, lr,weight_decay, batch_size)
print(f'{k}-折验证: 平均训练log rmse: {float(train_l):f}, 'f'平均验证log rmse: {float(valid_l):f}')
最终呈现的验证效果:
六、预测结果
· 定义net为之前定义好的神经网络层。
· 调用train()函数获取训练误差,并绘制图像呈现训练误差的效果。
· 模型训练好后,使用训练好的模型对测试集进行预测,并将结果从Pytorch张量转化为Numpy数组,保存到preds里。
· 将预测结果preds添加到test_data这个DataFrame变量中的SalePrice列里。
※pd.Series(preds.reshape(1,-1)[0])表示将preds转化为一行n列(-1表示根据总元素数量自动确定)的Numpy数组,再将第1行也就是这个数组全部元素转化为Series类型变量,以便添加到test_data的列中去。
· 合并Id列和SalePrice列,将其保存为CSV文件。
def train_and_pred(train_features, test_features, train_labels, test_data,num_epochs, lr, weight_decay, batch_size):net = get_net()train_ls, _ = train(net, train_features, train_labels, None, None,num_epochs, lr, weight_decay, batch_size)d2l.plot(np.arange(1, num_epochs + 1), [train_ls], xlabel='epoch',ylabel='log rmse', xlim=[1, num_epochs], yscale='log')print(f'训练log rmse:{float(train_ls[-1]):f}')# 将网络应用于测试集。preds = net(test_features).detach().numpy()# 将其重新格式化以导出到Kaggletest_data['SalePrice'] = pd.Series(preds.reshape(1, -1)[0])submission = pd.concat([test_data['Id'], test_data['SalePrice']], axis=1)submission.to_csv('submission.csv', index=False)
train_and_pred(train_features, test_features, train_labels, test_data,num_epochs, lr, weight_decay, batch_size)
最终呈现的模型效果: