内存的管理、扩充、存储保护、地址转换、分配和回收

一、 内存的存储保护

        1.1 上、下限寄存器方式
  • 上、下限寄存器(Limit Registers):这是一种硬件级别的内存保护机制。每个进程都有一对上、下限寄存器,用于定义该进程能够访问的内存范围。上限寄存器存储进程能够访问的最高地址,下限寄存器存储进程能够访问的最低地址。当进程尝试访问内存时,CPU会检查该访问是否在合法的范围内,以确保没有越界访问。

  • 越界检查:在执行每个内存访问指令之前,CPU会检查目标地址是否在上、下限寄存器定义的范围内。如果越界,CPU将阻止对该地址的访问,触发相应的异常或中断。

1.2 重定位寄存器和界地址寄存器方式
  • 重定位寄存器(Base Register):这个寄存器存储进程的起始物理地址。当进程试图访问内存时,该寄存器中的基地址会被加到逻辑地址上,从而得到物理地址。

  • 界地址寄存器(Limit Register):这个寄存器存储了进程的最大逻辑地址。在进行内存访问时,CPU会检查计算出的物理地址是否在合法的范围内,即不超过界地址寄存器定义的最大逻辑地址。

  • 越界检查:通过检查计算出的物理地址是否在合法范围内,系统可以防止进程越界访问。

 二、 地址转换

  1. 绝对装入(Absolute Loading)

    • 描述:在这种方式中,编译器负责将程序的逻辑地址直接映射到物理地址,生成可执行文件时就已经确定了程序在内存中的位置。
    • 特点:适用于单道程序的阶段,通常在没有操作系统的环境中,整个计算机系统只运行一个程序,程序在内存中的位置是固定的,不会发生变化。
  2. 可重定位装入(Relocatable Loading)

    • 描述:在可重定位装入方式中,装入程序(Loader)负责将程序加载到内存,并进行地址转换,使得程序可以被加载到内存的不同位置而不需要重新编译。
    • 特点:主要应用于早期多道批处理系统的阶段,允许多个程序在内存中并发执行,每个程序可以独立加载并运行,而不影响其他程序。
  3. 动态运行时装入(Dynamic Loading)

    • 描述:在动态运行时装入方式中,地址转换是在程序运行时由操作系统动态完成的。程序的某一部分在需要执行时才被加载到内存,而且可以加载到内存的任意位置。
    • 特点:通常在现代操作系统中应用,允许程序按需加载,减少内存的浪费,提高系统的灵活性和资源利用率。

这三种方式代表了不同的演进阶段和系统设计思想。绝对装入适用于简单的单道程序环境,可重定位装入适用于早期多道批处理系统,而动态运行时装入更适用于现代操作系统,能够支持多任务并灵活利用系统资源。

三、覆盖与交换

3.1 覆盖技术
  • 描述:覆盖技术是一种通过将程序的不同部分加载到相同的内存地址上,但在不同的时间点上进行的技术。这样,每次只有一个部分被加载到内存中,而其他部分被保存在外部存储器中。
  • 工作原理:当程序执行到需要覆盖的部分时,系统会将当前加载的部分替换为新的部分,从而实现对程序的连续运行。这样做的目的是减少整个程序的内存占用,尤其是在内存较小的环境中,以便让更大的程序能够在有限的内存空间中运行。
  • 应用:覆盖技术在早期的计算机系统和操作系统中经常用于处理内存受限的情况,允许运行大型程序而不需要一次性将整个程序加载到内存中。

3.2 交换技术 

        交换(对换)技术的设计思想:内存空间紧张时,系统将内存中某些进程暂时换出外存,把外存中某些已具备运行条件的进程换入内存(进程在内存与磁盘间动态调度)暂时换出外存等待的进程状态为挂起状态(挂起态,suspend)挂起态又可以进一步细分为就绪挂起、阻塞挂起两种状态。

  • 描述:交换技术涉及将整个进程从内存中移到外部存储器(通常是磁盘),以释放内存空间供其他进程使用。当需要运行被交换出的进程时,它会被重新调入内存。
  • 工作原理:系统会定期检查内存中运行的进程,并根据优先级或其他策略,将一些进程交换到外部存储器中,以便为新的进程或高优先级的进程腾出内存空间。
  • 应用:交换技术通常用于处理多道程序设计的环境,其中多个进程并发执行,但系统的总内存容量可能无法同时容纳所有进程。

四、 连续分配管理方式

 4.1 单一连续分配

4.2 固定分区分配 

4.3动态分配分区 

五、 动态分区回收 

        动态分区分配又称为可变分区分配。这种分配方式不会预先划分内存分区,而是在进程装入内存时,根据进程的大小动态地建立分区,并使分区的大小正好适合进程的需要。因此系统分区的大小和数目是可变的。动态分区分配没有内部碎片,但是有外部碎片。内部碎片,分配给某进程的内存区域中,如果有些部分没有用上。外部碎片,是指内存中的某些空闲分区由于太小而难以利用。        

情况一:回收区的后面有一个相邻的空闲分区

情况二:回收区的前面有一个相邻的空闲分区

情况三:回收区的前、后各有一个相邻的空闲分区

情况四:回收区的前、后都没有相邻的空闲分区

六、 动态分配算法 

1. 首次适应算法
  • 描述:首次适应算法是一种简单而直观的回收算法。它从分区链表的头开始查找第一个能够容纳需要回收的内存大小的空闲分区,并将该分区标记为已分配。
  • 特点:相对简单,容易实现,但可能导致碎片问题,即分区中剩余的小块空间难以利用。

2. 最佳适应算法 
  • 描述:最佳适应算法选择能够满足回收内存大小需求的空闲分区中最小的一个。这样可以最小化碎片问题,但可能导致分区链表频繁变动。
  • 特点:能够尽量减小碎片,但分区链表可能会变得复杂,且搜索最佳分区可能比较耗时。

3. 最坏适应算法 
  • 描述:最差适应算法选择能够容纳回收内存大小需求的空闲分区中最大的一个。这种策略有助于减少外部碎片,但可能导致剩余的空闲分区较小。
  • 特点:降低了外部碎片,但可能导致空闲空间分布不均匀。

4.邻近适应算法
  • 描述:循环首次适应算法类似于首次适应算法,但它从上次结束的位置开始查找。这样可以减少搜索的开销。
  • 特点:相对于首次适应算法,减少了搜索的开销,但仍可能导致碎片问题。

 

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/227048.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Android12】WindowManagerService架构分析

Android WindowManagerService架构分析 WindowManagerService(以下简称WMS) 是Android的核心服务。WMS管理所有应用程序窗口(Window)的Create、Display、Update、Destory。 因为Android系统中只有一个WMS(运行在SystemServer进程),可以称其为…

快宝技术:连接无代码开发,API集成提升电商营销和用户运营效率

无代码开发:创新的启航 快宝技术自2012年成立至今,一直是无代码开发领域的佼佼者。通过无代码开发平台,快宝技术旨在降低技术门槛,并使非技术人员能够轻松创建和部署应用程序。这不仅使得快递末端软件开发变得高效和便捷&#xf…

vue3.0项目搭建

一、安装vue3脚手架 卸载vue2脚手架 npm uninstall -g vue-cli清除缓存 npm cache clen --force安装最新脚手架 npm install -g vue/cli查看脚手架版本 vue -V 二、构建项目 创建项目 vue create 项目名选择配置 自定义配置,回车 上下键选择Linter / Formatter&a…

DC-2靶场

DC-2 下载地址:DC and Five86 Series Challenges - Downloads​编辑https://www.five86.com/downloads.html DC-2环境配置:解压后在vm虚拟机点击左上方文件-->打开-->选择解压后的DC-2。把kali和DC-2的网路适配器都改成NAT模式 flag1 首先进行主…

【教程】从零开始的ORB-SLAM3的安装与配置

引言 最近项目需求需要接触vslam,博主选择从ORB-SLAM3下手并且记录下安装的基本流程。不得不说,这安装流程就像二大娘的裹脚布。 大致环境前提:Ubuntu20.04 一、ORB-SLAM3的源码下载 1、首先,为了方便管理文件,我们…

面向对象三大特征之二:继承

继承的快速入门 什么是继承? Java中提供了一个关键字extends,用这个关键字,可以让一个类与另一个类建立起父子关系 继承的特点 子类能继承父类的非私有成员(成员变量、成员方法) 继承后对象的创建 子类的对象是由…

MyBatis Plus 大数据量查询优化

大数据量操作的场景大致如下: 数据迁移 数据导出 批量处理数据 在实际工作中当指定查询数据过大时,我们一般使用分页查询的方式一页一页的将数据放到内存处理。但有些情况不需要分页的方式查询数据或分很大一页查询数据时,如果一下子将数…

RTX 40 SUPER发布时间定了!价格也有了

快科技12月16日消息,NVIDIA RTX 40 SUPER系列显卡基本确定将在2024年1月8日正式发布,也就是CES 2024大展期间,随后在1月中下旬陆续解禁上市。 RTX 4070 SUPER 1月16日解禁公版/原价丐版,1月17日解禁高价高配版,上市开…

测试架构师必备技能-Nginx安装部署实战

Nginx(“engine x”)是一款是由俄罗斯的程序设计师Igor Sysoev所开发高性能的免费开源Web和 反向代理服务器,也是一个 IMAP/POP3/SMTP 代理服务器。在高并发访问的情况下,Nginx是Apache服务器不错的替代品。官网数据显示每秒TPS高达50W左右。本文为读者朋…

FPGA设计时序约束十二、Set_Clock_Sense

目录 一、序言 二、Set Clock Sense 2.1 基本概念 2.2 设置界面 2.3 命令语法 2.4 命令示例 三、工程示例 3.1 工程代码 3.2 无set_clock_sense 3.3 设置set_clock_sense 四、参考资料 一、序言 本章将介绍Set_Clock_Sense约束,在介绍约束之前&#xff0…

《Kotlin核心编程》笔记:反射、注解和加锁

Kotlin 和 Java 反射 1)Kotlin 的 KClass 和 Java 的 Class 可以看作同一个含义的类型,并且可以通过.java和.kotlin方法在KClass和Class之间互相转化。2)Kotlin 的 KCallable 和 Java 的 AccessiableObject 都可以理解为可调用元素。Java 中构…

Redis List类型

列表类型是用来存储多个有序的字符串,如图所示,a、b、c、d、e 五个元素从左到右组成了一个有序的列表,列表中的每个字符串称为元素 (element),一个列表最多可以存储2的32次方 -1个元素。在 Redis 中,可以对列表两端插入…

Linux 基本语句_15_Tcp并发服务器

原理&#xff1a; 利用父子进程。父进程接收客户端的连接请求&#xff0c;子进程处理客户端的数据处理操作&#xff0c;两者各施其职。最终实现能够多个客户端连接一个服务端的操作。 代码&#xff1a; 服务端代码&#xff1a; #include <stdio.h> #include <sys/…

借着期末作业,写一个JavaWeb项目

合集传送门 要求 学生成绩管理系统设计与实现 设计一个学生成绩管理系统。根据以下功能&#xff0c;分析使用的逻辑结构和存储结构。并设计菜单&#xff0c;显示相应结果。 &#xff08;1&#xff09;录入功能&#xff1a;能够录入学生成绩&#xff08;包括&#xff1a;学号…

一个遗憾,特此纪念

这是学习笔记的第 2479篇文章 说一件有些遗憾的事情。其实今年遗憾的事情有好几件&#xff0c;这一件算是其中之一。倒不是它发生在今天&#xff0c;而是每每想起来&#xff0c;都有一种无力感和酸楚&#xff0c;索性简单写一写纪念一下。 这件事情就是放弃了读博士的想法。 在…

权重衰减(Weight Decay)

在深度学习中&#xff0c;权重衰减&#xff08;Weight Decay&#xff09;是一种常用的正则化技术&#xff0c;旨在减少模型的过拟合现象。权重衰减通过向损失函数添加一个正则化项&#xff0c;以惩罚模型中较大的权重值。 一、权重衰减 在深度学习中&#xff0c;模型的训练过程…

SQL基础:操作环境搭建

在上一节中&#xff0c;我们简单讲述了数据库和SQL的基本概念。 本节我们讲述一下环境搭建&#xff0c;为下一节讲表的基本操作做下铺垫。 环境搭建 具体到操作&#xff0c;我们就要准备一些环境了。如果不进行练习&#xff0c;我们学习的知识将很快被遗忘。 MySQL安装&…

【MySQL内置函数】

目录&#xff1a; 前言一、日期函数获取日期获取时间获取时间戳在日期上增加时间在日期上减去时间计算两个日期相差多少天当前时间案例&#xff1a;留言板 二、字符串函数查看字符串字符集字符串连接查找字符串大小写转换子串提取字符串长度字符串替换字符串比较消除左右空格案…

【话题】低代码123

目录 一、什么是低代码 二、低代码的优缺点 三、你认为低代码会替代传统编程吗&#xff1f; 四、有哪些低代码工具和框架 4.1 国外的平台 4.2 国内的平台 五、未来的软件研发 低代码&#xff0c;听着就过瘾的一个词。而且不是无代码&#xff0c;这说明&#xff0c;低代码…

计算机组成原理-函数调用的汇编表示(call和ret指令 访问栈帧 切换栈帧 传递参数和返回值)

文章目录 call指令和ret指令高级语言的函数调用x86汇编语言的函数调用call ret指令小结其他问题 如何访问栈帧函数调用栈在内存中的位置标记栈帧范围&#xff1a;EBP ESP寄存器访问栈帧数据&#xff1a;push pop指令访问栈帧数据&#xff1a;mov指令小结 如何切换栈帧函数返回时…