风速预测(五)基于Pytorch的EMD-CNN-LSTM模型

目录

前言

1 风速数据EMD分解与可视化

1.1 导入数据

1.2 EMD分解

2 数据集制作与预处理

2.1 先划分数据集,按照8:2划分训练集和测试集

2.2 设置滑动窗口大小为96,制作数据集

3 基于Pytorch的EMD-CNN-LSTM模型预测

3.1 数据加载,训练数据、测试数据分组,数据分batch

3.2 定义EMD-CNN-LSTM预测模型

3.3 定义模型参数

3.4 模型训练

3.5 结果可视化


往期精彩内容:

风速预测(一)数据集介绍和预处理-CSDN博客

风速预测(二)基于Pytorch的EMD-LSTM模型-CSDN博客

风速预测(三)EMD-LSTM-Attention模型-CSDN博客

风速预测(四)基于Pytorch的EMD-Transformer模型-CSDN博客

前言

LSTF(Long Sequence Time-Series Forecasting)问题是指在时间序列预测中需要处理长序列的情况。在实际应用中,时间序列可能会包含非常大量的数据点,在这种情况下,传统的时间序列预测模型可能会遇到一些挑战,因为处理长序列时会出现一些问题,例如:

  • 长期依赖性: 随着时间序列数据的增长,模型需要能够捕捉长期的依赖关系和趋势。

  • 计算复杂性: 针对长序列进行训练和预测通常需要更多的计算资源和时间。

  • 内存消耗: 长序列通常需要大量的内存来存储数据和模型参数,这可能会导致内存耗尽或者性能下降的问题。

在处理LSTF问题时,选择合适的窗口大小(window size)是非常关键的。选择合适的窗口大小可以帮助模型更好地捕捉时间序列中的模式和特征,为了提取序列中更长的依赖建模,本文把窗口大小提升到96,运用EMD-CNN-LSTM模型来充分提取序列中的特征信息。

本文基于前期介绍的风速数据(文末附数据集),先经过经验模态EMD分解,然后通过数据预处理,制作和加载数据集与标签,最后通过Pytorch实现EMD-CNN-LSTM模型对风速数据的预测。风速数据集的详细介绍可以参考下文:

风速预测(一)数据集介绍和预处理

1 风速数据EMD分解与可视化

1.1 导入数据

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
matplotlib.rc("font", family='Microsoft YaHei')
​
# 读取已处理的 CSV 文件
df = pd.read_csv('wind_speed.csv' )
# 取风速数据
winddata = df['Wind Speed (km/h)'].tolist()
winddata = np.array(winddata) # 转换为numpy
# 可视化
plt.figure(figsize=(15,5), dpi=100)
plt.grid(True)
plt.plot(winddata, color='green')
plt.show()

1.2 EMD分解

from PyEMD import EMD
​
# 创建 EMD 对象
emd = EMD()
# 对信号进行经验模态分解
IMFs = emd(winddata)
​
# 可视化
plt.figure(figsize=(20,15))
plt.subplot(len(IMFs)+1, 1, 1)
plt.plot(winddata, 'r')
plt.title("原始信号")
​
for num, imf in enumerate(IMFs):plt.subplot(len(IMFs)+1, 1, num+2)plt.plot(imf)plt.title("IMF "+str(num+1), fontsize
=
10
)
# 增加第一排图和第二排图之间的垂直间距
plt.subplots_adjust(hspace=0.8, wspace=0.2)
plt.show()

2 数据集制作与预处理

2.1 先划分数据集,按照8:2划分训练集和测试集

2.2 设置滑动窗口大小为96,制作数据集

3 基于Pytorch的EMD-CNN-LSTM模型预测

3.1 数据加载,训练数据、测试数据分组,数据分batch

# 加载数据
import torch
from joblib import dump, load
import torch.utils.data as Data
import numpy as np
import pandas as pd
import torch
import torch.nn as nn
# 参数与配置
torch.manual_seed(100)  # 设置随机种子,以使实验结果具有可重复性
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
​
# 加载数据集
def dataloader(batch_size, workers=2):# 训练集train_set = load('train_set')train_label = load('train_label')# 测试集test_set = load('test_set')test_label = load('test_label')
​# 加载数据train_loader = Data.DataLoader(dataset=Data.TensorDataset(train_set, train_label),batch_size=batch_size, num_workers=workers, drop_last=True)test_loader = Data.DataLoader(dataset=Data.TensorDataset(test_set, test_label),batch_size=batch_size, num_workers=workers, drop_last=True)return train_loader, test_loader
​
batch_size = 64
# 加载数据
train_loader, test_loader = dataloader(batch_size)

3.2 定义EMD-CNN-LSTM预测模型

注意:输入风速数据形状为 [64, 10, 96], batch_size=64,  维度10维代表10个分量,96代表序列长度(滑动窗口取值)。

3.3 定义模型参数

# 定义模型参数
batch_size = 64
input_len = 96   # 输入序列长度为96 (窗口值)
input_dim = 10    # 输入维度为10个分量
conv_archs = ((1, 32), (1, 64))   # CNN 层卷积池化结构  类似VGG
hidden_layer_sizes = [64, 128]  # LSTM 层 结构
output_size = 1 # 单步输出
​
model = EMDCNNLSTMModel(batch_size, input_len, input_dim, conv_archs, hidden_layer_sizes, output_size=1)  
​
# 定义损失函数和优化函数 
model = model.to(device)
loss_function = nn.MSELoss()  # loss
learn_rate = 0.003
optimizer = torch.optim.Adam(model.parameters(), learn_rate)  # 优化器

3.4 模型训练

训练结果

采用两个评价指标:MSE 与 MAE 对模型训练进行评价,100个epoch,MSE 为0.00412,MAE  为 0.000241,EMD-CNN-LSTM预测效果良好,性能提升明显,适当调整模型参数,还可以进一步提高模型预测表现。通过CNN模型来处理输入的长窗口时间序列数据,能够有效地捕获局部模式和特征,将CNN模型的输出作为LSTM模型的输入,LSTM模型能够更好地捕捉时间序列数据中的长期依赖关系。EMD-CNN-LSTM模型效果明显,可见其性能的优越性。

注意调整参数:

  • 可以适当调整CNN中卷积池化的层数和维度,微调学习率;

  • 调整LSTM层数和维度,增加更多的 epoch (注意防止过拟合)

  • 可以改变滑动窗口长度(设置合适的窗口长度)

3.5 结果可视化

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/225550.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

中医处方软件西医电子处方系统,一键生成处方单可设置配方模板教程

一、前言 有的诊所是中医和西医都有,医师是全科医师,那么所使用的软件既要能开中药处方也要能开西药处方,而且可以通过一键生成配方,则可以节省很多时间。 下面就以 佳易王诊所卫生室电子处方为例说明 如上图,如果是…

【C++】POCO学习总结(十七):日志系统(级别、通道、格式化、记录流)

【C】郭老二博文之:C目录 1、Poco::Message 日志消息 1.1 说明 所有日志消息都在Poco::Message对象中存储和传输。 头文件:#include “Poco/Message.h” 一条消息包含如下内容:优先级、来源、一个文本、一个时间戳、进程和线程标识符、可选…

微服务组件Sentinel的学习(2)

限流规则 流控模式直接模式关联模式链路模式 流控效果快速失败warm up排队等待 热点参数限流 流控模式 添加限流规则,可点击高级选项,有三种流控模式选择: 直接:统计当前资源的请求,触发闻值时对当前资源直接限流,也是…

Axure之动态面板轮播图

目录 一.介绍 二.好处 三.动态面板轮播图 四.动态面板多方式登录 五.ERP登录 六.ERP的左侧菜单栏 七.ERP的公告栏 今天就到这了哦!!!希望能帮到你了哦!!! 一.介绍 Axure中的动态面板是一个非常有用的组…

2024年视频监控行业发展趋势预测及EasyCVR视频分析技术应用

随着技术的改进,视频监控领域在过去十年迅速发展。与此同时,该行业正在通过先进创新技术(如人工智能和云计算等技术)的积极商业化,获得了新的增长机会。视频监控系统不再仅仅用于记录图像,而是已经成为全球…

力扣题目学习笔记(OC + Swift) 12. 整数转罗马数字

12. 整数转罗马数字 罗马数字包含以下七种字符: I, V, X, L,C,D 和 M。 字符 数值 I 1 V 5 X 10 L 50 C 100 D 500 M 1000 例如, 罗马数字 2 写做 II ,即为两个并列的 1。12 写做 XI…

LVM异常分析

环境信息 硬件环境 软件环境 相关软件包 云上鲲鹏RH220 操作系统:麒麟V10sp1-0711 系统自带多路径:multipath-tools-0.8.4-6 光纤连接华为存储Oceanstor18500 v5 内核版本:4.19.90 故障描述 云上鲲鹏RH220安装系统麒麟V10sp1-071…

ssm+vue的高校智能培训管理系统分析与设计(有报告)。Javaee项目,ssm vue前后端分离项目。

演示视频: ssmvue的高校智能培训管理系统分析与设计(有报告)。Javaee项目,ssm vue前后端分离项目。 项目介绍: 采用M(model)V(view)C(controller&#xff09…

npm ,yarn 更换使用国内镜像源,阿里源,清华大学源

在平时开发当中,我们经常会使用 Npm,yarn 来构建 web 项目。但是npm默认的源的服务器是在国外的,如果没有梯子的话。会感觉特别特别慢,所以,使用国内的源是非常有必要的。 在这里插入图片描述 Nnpm, yarn …

1130 - Host “WIN-CA4FHERGO9J‘ is not allowed to connect to this MySQL server

1、知识小课堂 1.1 Mysql MySQL是一个关系型数据库管理系统,由瑞典MySQL AB公司开发,属于Oracle旗下产品。它是最流行的关系型数据库管理系统之一,在WEB应用方面,MySQL是最好的RDBMS (Relational Database Management System&am…

elementui + vue2实现表格行的上下移动

场景&#xff1a; 如上&#xff0c;要实现表格行的上下移动 实现&#xff1a; <el-dialogappend-to-bodytitle"条件编辑":visible.sync"dialogVisible"width"60%"><el-table :data"data1" border style"width: 100%&q…

antd+vue:tree组件:父级节点禁止选择并不展示选择框——基础积累

antdvue:tree组件&#xff1a;父级节点禁止选择并不展示选择框——基础积累 1.判断哪些是父节点&#xff0c;给父节点添加disabled属性——this.permissionList是数据源2.通过css样式来处理disabled的父节点3.完整代码如下&#xff1a; 最近在写后台管理系统的时候&#xff0c;…

[GXYCTF2019]Ping Ping Ping (文件执行漏洞)

本题考点&#xff1a; 1、命令联合执行 2、命令绕过空格方法 3、变量拼接 1、命令联合执行 ; 前面的执行完执行后面的| 管道符&#xff0c;上一条命令的输出&#xff0c;作为下一条命令的参数&#xff08;显示后面的执行结果&#xff09;|| 当前面的执行出错时&#xff08;为…

C#winform实现单页面自由切换窗口

一、介绍 这是效果图&#xff0c;由于视频压缩画质很差&#xff0c;看个效果就好。 左侧是打开界面的按钮&#xff0c;点击左侧按钮右侧打开不同窗口&#xff0c;点击右侧窗口中的按钮&#xff0c;也可以切换页面&#xff0c;可以方便的进行返回、下一页等操作。 每个窗口打开…

JavaSE语法之七:封装

文章目录 一、封装的概念二、访问限定符三、封装扩展之包1. 包的概念2. 导入包中的类3. 自定义包4. 常见的包 四、实现封装五、static成员1. 再谈学生类成员变量2. static修饰成员变量3. static修饰成员方法4. static成员变量初始化 六、代码块1. 代码块概念及其分类2. 普通代码…

香槟过了保质期还能喝吗?

香槟是起泡酒的高级代表&#xff0c;是浪漫和喜庆的化身&#xff0c;它浑身上下都散发着无穷的魅力。那么&#xff0c;这么精贵的葡萄酒有没有保质期&#xff0c;会不会变质呢&#xff1f;云仓酒庄的品牌雷盛红酒分享当然会。一瓶酒的生命离不开它的保存期限&#xff0c;酒的质…

理解Socket

前言 我在去年就学习过Java中Socket的使用&#xff0c;但对于Socket的理解一直都是迷迷糊糊的。看了网上很多关于Socket的介绍&#xff0c;看完还是不太理解到底什么是Socket&#xff0c;还是很迷。直到最近在学习计算机网络&#xff0c;我才对Socket有了一个更深地理解。之前一…

HBuilder X

选择一款编程软件有以下几个好处&#xff1a; &#xff08;1&#xff09;提高效率&#xff1a;编程软件通常强调代码编辑和自动完成&#xff0c;可以帮助程序员更快速、更准确地输入代码。 &#xff08;2&#xff09;降低错误率&#xff1a;编程软件还可以检测代码中的错误&a…

如何提升数据结构方面的算法能力?

谈及为什么需要花时间学算法&#xff0c;我至少可以列举出三个很好的理由。 (1)性能&#xff1a;选择正确的算法可以显著提升应用程序的速度。仅就搜索来说&#xff0c;用二分查找替 换线性搜索就能为我们帶来巨大的收益。 (2)安全性&#xff1a;如果你选用了错误的算法&…

设计模式之结构型设计模式(二):工厂模式 抽象工厂模式 建造者模式

工厂模式 Factory 1、什么是工厂模式 工厂模式旨在提供一种统一的接口来创建对象&#xff0c;而将具体的对象实例化的过程延迟到子类或者具体实现中。有助于降低客户端代码与被创建对象之间的耦合度&#xff0c;提高代码的灵活性和可维护性。 定义了一个创建对象的接口&…