竞赛保研 python+深度学习+opencv实现植物识别算法系统

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 基于深度学习的植物识别算法研究与实现

在这里插入图片描述

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:4分
  • 工作量:4分
  • 创新点:4分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate


2 相关技术

2.1 VGG-Net模型

Google DeepMind公司研究员与牛津大学计算机视觉组在2014年共同研发出了一种全新的卷积神经网络–VGG-
Net。在同年举办的ILSVRC比赛中,该网络结构模型在分类项目中取得了十分出色的成绩,由于其简洁性和实用性,使得其在当时迅速,飞快地成为了最受欢迎的卷积神经网络模型。VGG-
Net卷积神经网络在近年来衍生出了A-
E七种不同的层次结构,本次研究使用其中的D结构,也就是VGG-16Net结构,该结构中包含了13个卷积层,5个池化层和3个全连接层。针对所有的卷积层,使用相同的5x5大小的卷积核,针对所有的池化层,使用相同的3x3大小的池化核。VGG-
Net结构如图所示。

在这里插入图片描述

2.2 VGG-Net在植物识别的优势

在针对植物识别问题上,VGG-Net有着一些相较于其他神经网络的优势,主要包括以下几点:

(1) 卷积核,池化核大小固定

网络中所有的卷积核大小固定为3x3,所有的池化核大小固定为5x5。这样在进行卷积和池化操作的时候,从数据中提取到的特征更加明显,同时在层与层的连接时,信息的丢失会更少,更加方便后续对于重要特征的提取和处理。

(2) 特征提取更全面

VGG-
Net网络模型中包含了13个卷积层。卷积层数目越多,对于特征的提取更加的全面。由于需要对于植物的姿态、颜色等进行判定,植物的特征较多,需要在提取时更加的全面,细致,才有可能得到一个更加准确的判定。VGG-
Net符合条件。

在这里插入图片描述

(3) 网络训练误差收敛速度较快

VGG-
Net网络在训练时收敛速度相对较快,能够较快地得到预期的结果。具有这一特点的原因有两个,一个是网络中每一个卷积层和池化层中的卷积核大小与池化核大小固定,另一个就是对于各个隐藏层的参数初始化方法使用专门针对ReLU激活函数的Kaiming正态初始化方法。

3 VGG-Net的搭建

本次研究基于Pytorch深度学习框架进行网络的搭建,利用模块化的设计思想,构建一个类,来对于整个的网络进行结构上的封装。这样搭建的好处是可以隐藏实现的内部细节,提高代码的安全性,增强代码的复用效率,并且对于一些方法,通过在内部集成,可以方便之后对于其中方法的调用,提升代码的简洁性。
在网络搭建完成后,将数据集传入网络中进行训练,经过一段时间后即可得到植物识别的分类识别结果。

3.1 Tornado简介

Tornado全称Tornado Web
Server,是一个用Python语言写成的Web服务器兼Web应用框架,由FriendFeed公司在自己的网站FriendFeed中使用,被Facebook收购以后框架在2009年9月以开源软件形式开放给大众。

(1) 优势

  • 轻量级web框架
  • 异步非阻塞IO处理方式
  • 出色的抗负载能力
  • 优异的处理性能,不依赖多进程/多线程,一定程度上解决C10K问题
  • WSGI全栈替代产品,推荐同时使用其web框架和HTTP服务器

(2) 关键代码

class MainHandler(tornado.web.RequestHandler):def get(self):
​            self.render("index.html")def post(self):keras.backend.clear_session()img = Image.open(BytesIO(self.request.files['image'][0]['body']))img = imgb_img = Image.new('RGB', (224, 224), (255, 255, 255))size = img.sizeif size[0] >= size[1]:rate = 224 / size[0]new_size = (224, int(size[1] * rate))img = img.resize(new_size, Image.ANTIALIAS).convert("RGB")b_img.paste(img, (0, random.randint(0, 224 - new_size[1])))else:rate = 224 / size[1]new_size = (int(size[0] * rate), 224)img = img.resize(new_size, Image.ANTIALIAS).convert("RGB")b_img.paste(img, (random.randint(0, 224 - new_size[0]), 0))if self.get_argument("method", "mymodel") == "VGG16":Model = load_model("VGG16.h5")else:Model = load_model("InceptionV3.h5")data = orc_img(Model,b_img)self.write(json.dumps({"code": 200, "data": data}))def make_app():template_path = "templates/"static_path = "./static/"return tornado.web.Application([(r"/", MainHandler),], template_path=template_path, static_path=static_path, debug=True)​    
​    def run_server(port=8000):
​        tornado.options.parse_command_line()
​        app = make_app()
​        app.listen(port)print("\n服务已启动 请打开 http://127.0.0.1:8000 ")
​        tornado.ioloop.IOLoop.current().start()

4 Inception V3 神经网络

GoogLeNet对网络中的传统卷积层进行了修改,提出了被称为 Inception
的结构,用于增加网络深度和宽度,提高深度神经网络性能。从Inception V1到Inception
V4有4个更新版本,每一版的网络在原来的基础上进行改进,提高网络性能。

4.1 网络结构

在这里插入图片描述

inception结构的作用(inception的结构和作用)

作用:代替人工确定卷积层中过滤器的类型或者确定是否需要创建卷积层或者池化层。即:不需要人为决定使用什么过滤器,是否需要创建池化层,由网络自己学习决定这些参数,可以给网络添加所有可能值,将输入连接起来,网络自己学习需要它需要什么样的参数。

inception主要思想

用密集成分来近似最优的局部稀疏解(如上图)

  • 采用不同大小的卷积核意味着有不同大小的感受野,最后的拼接意味着不同尺度特征的融合。
  • 之所以卷积核大小采用1x1、3x3和5x5,主要是为了方便对齐。设定卷积步长stride=1之后,只要分别设定padding = 0、1、2,采用same卷积可以得到相同维度的特征,然后这些特征直接拼接在一起。
  • 很多地方都表明pooling挺有效,所以Inception里面也嵌入了pooling。
  • 网络越到后面特征越抽象,且每个特征涉及的感受野也更大,随着层数的增加,3x3和5x5卷积的比例也要增加。
  • 最终版inception,加入了1x1 conv来降低feature map厚度。

5 开始训练

5.1 数据集

训练图像按照如下方式进行分类,共分为9文件夹。

在这里插入图片描述

5.2 关键代码

   from keras.utils import Sequenceimport math​    class SequenceData(Sequence):def __init__(self, batch_size, target_size, data):# 初始化所需的参数self.batch_size = batch_sizeself.target_size = target_sizeself.x_filenames = datadef __len__(self):# 让代码知道这个序列的长度num_imgs = len(self.x_filenames)return math.ceil(num_imgs / self.batch_size)def __getitem__(self, idx):# 迭代器部分batch_x = self.x_filenames[idx * self.batch_size: (idx + 1) * self.batch_size]imgs = []y = []for x in batch_x:img = Image.open(x)b_img = Image.new('RGB', self.target_size, (255, 255, 255))size = img.sizeif size[0] >= size[1]:rate = self.target_size[0] / size[0]new_size = (self.target_size[0], int(size[1] * rate))img = img.resize(new_size, Image.ANTIALIAS).convert("RGB")b_img.paste(img, (0, random.randint(0, self.target_size[0] - new_size[1])))else:rate = self.target_size[0] / size[1]new_size = (int(size[0] * rate), self.target_size[0])img = img.resize(new_size, Image.ANTIALIAS).convert("RGB")b_img.paste(img, (random.randint(0, self.target_size[0] - new_size[0]), 0))img = b_imgif random.random() < 0.1:img = img.convert("L").convert("RGB")if random.random() < 0.2:img = img.rotate(random.randint(0, 20))  # 随机旋转一定角度if random.random() < 0.2:img = img.rotate(random.randint(340, 360))  # 随 旋转一定角度imgs.append(img.convert("RGB"))x_arrays = 1 - np.array([np.array(i)  for i in imgs]).astype(float) / 255  # 读取一批图片batch_y = to_categorical(np.array([labels.index(x.split("/")[-2]) for x in batch_x]), len(labels))return x_arrays, batch_y​    

5.3 模型预测

利用我们训练好的 vgg16.h5 模型进行预测,相关代码如下:

    def orc_img(model,image):
​        img =np.array(image)
​        img = np.array([1 - img.astype(float) / 255])
​        predict = model.predict(img)
​        index = predict.argmax()print("CNN预测", index)
​    target = target_name[index]index2 = np.argsort(predict)[0][-2]target2 = target_name[index2]index3 = np.argsort(predict)[0][-3]target3 = target_name[index3]return {"target": target,"predict": "%.2f" % (float(list(predict)[0][index]) * 64),"target2": target2,"predict2": "%.2f" % (float(list(predict)[0][index2]) * 64),}

6 效果展示

6.1 主页面展示

在这里插入图片描述

6.2 图片预测

在这里插入图片描述

6.3 三维模型可视化

学长在web页面上做了一个三维网络结构可视化功能,可以直观的看到网络模型结构

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

7 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/225113.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

AI人工智能在建筑智能化工程设计的应用

AI人工智能在建筑智能化工程设计的应用 相关政策&#xff1a; 建筑智能化工程设计资质是为了合理设计各种智能化系统&#xff0c;让它们有机地结合成为有效的整体作用。在工程设计标准中&#xff0c;智能化资质设计全称为建筑智能化系统专项设计资质。企业一旦具备智能化设计资…

vue 使用 Echarts做地图及飞线效果

前言&#xff1a; 效果图 一. 项目中安装以及引入Echarts 1.1 npm 命令安装echarts库 npm install echarts --save 1.2 yarn命令安装echarts库 yarn add echarts 1.3 引用 a. 在使用页面上引入 在Vue组件的script标签中引入echarts库 使用 echarts import * as echarts f…

动态面板简介以及ERP原型图案列

动态面板简介以及ERP原型图案列 1.Axure动态面板简介2.使用Axure制作ERP登录界面3.使用Asure完成左侧菜单栏4.使用Axuer完成公告栏5.使用Axuer完成左边侧边栏 1.Axure动态面板简介 在Axure RP中&#xff0c;动态面板是一种强大的交互设计工具&#xff0c;它允许你创建可交互的…

mysql数据库损坏后重装,数据库备份

重装 先卸载 sudo apt-get remove --purge mysql-server mysql-client mysql-common sudo apt-get autoremove sudo apt-get autoclean 然后重新安装MySQL: sudo apt-get install mysql-server mysql-client 首先要先使用无密码登录数据库一定要使用 sudo mysql -uroo…

C#Winform菜鸟驿站管理系统-快递信息管理界面多条件查询实现方法

1&#xff0c;具体的页面设计如下&#xff0c; 2&#xff0c; 关于下拉框数据填充实现&#xff0c;站点选择代码实现如下&#xff0c;因为站点加载在很多界面需要用到&#xff0c;所以把加载站点的方法独立出来如下&#xff1b; /// <summary>/// 加载站点下拉框/// <…

SaaS行业分析

文章目录 什么是SaaS ?SaaS的标准定义什么是软件即服务&#xff1f;SaaS与传统软件的区别 &#xff1f; SaaS行业分析你知道最赚钱的行业是什么&#xff1f;互联网带给企业的变化 SaaS与PaaS、IaaS的区别&#xff1f;IaaS&#xff08;Infrastructure as a Service&#xff09;…

配置VRRP负载分担示例

一、组网需求&#xff1a; HostA和HostC通过Switch双归属到SwitchA和SwitchB。为减轻SwitchA上数据流量的承载压力&#xff0c;HostA以SwitchA为默认网关接入Internet&#xff0c;SwitchB作为备份网关&#xff1b;HostC以SwitchB为默认网关接入Internet&#xff0c;SwitchA作为…

基于YOLOv8深度学习的高精度车辆行人检测与计数系统【python源码+Pyqt5界面+数据集+训练代码】目标检测、深度学习实战

《博主简介》 小伙伴们好&#xff0c;我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。 ✌更多学习资源&#xff0c;可关注公-仲-hao:【阿旭算法与机器学习】&#xff0c;共同学习交流~ &#x1f44d;感谢小伙伴们点赞、关注&#xff01; 《------往期经典推…

介绍一款低代码数据可视化平台

一、前言 随着企业数字化拉开序幕&#xff0c;低代码( Low Code Development)开发的概念开始火起来&#xff0c;即用少量的代码就能开发复杂的业务系统。然后更进一步&#xff0c;由此又催生出一个新的概念&#xff1a;无代码开发( No Code Development)。 低代码和无代码开发平…

Docker单点部署 Elasticsearch + Kibana [8.11.3]

文章目录 一、Elasticsearch二、Kibana三、访问四、其他 Elasticsearch 和 Kibana 版本一般需要保持一致才能一起使用&#xff0c;但是从 8.x.x开始&#xff0c;安全验证不断加强&#xff0c;甚至8.x.x之间的版本安全验证方法都不一样&#xff0c;真的很恼火。 这里记录一次成…

娱乐新拐点:TikTok如何改变我们的日常生活?

在数字时代的浪潮中&#xff0c;社交媒体平台不断涌现&#xff0c;其中TikTok以其独特的短视频内容在全球范围内掀起了一场娱乐革命。本文将深入探讨TikTok如何改变我们的日常生活&#xff0c;从社交互动、文化传播到个人创意表达&#xff0c;逐步改写了娱乐的新篇章。 短视频潮…

idea2023解决右键没有Servlet的问题

复制Servlet Class.java中的文件。 回到文件&#xff0c;然后点击小加号 然后输入刚刚复制的东西&#xff1a; 3. 此时右键有servlet。 4. 然后他让你输入下面两个框&#xff1a; JAVAEE TYPE中输入Servlet Class Name 表示你要创建的Servlet类的名称是什么。自己起名字。然后…

手动添加Git Bash Here到右键菜单(超详细)

通过WindowsR快捷键可以打开“运行窗口”&#xff0c;在“窗口”中输入“regedit”&#xff0c;点击“确定”打开注册表。 依次进入HKEY_CLASSES_ROOT —-》 Directory —-》Background —-》 shell 路径为Computer\HKEY_CLASSES_ROOT\Directory\Background\shell 3.在“s…

状态的一致性和FlinkSQL

状态一致性 一致性其实就是结果的正确性。精确一次是指数据有可能被处理多次&#xff0c;但是结果只有一个。 三个级别&#xff1a; 最多一次&#xff1a;1次或0次&#xff0c;有可能丢数据至少一次&#xff1a;1次或n次&#xff0c;出错可能会重试 输入端只要可以做到数据重…

[每周一更]-(第27期):HTTP压测工具之wrk

[补充完善往期内容] wrk是一款简单的HTTP压测工具,托管在Github上,https://github.com/wg/wrkwrk 的一个很好的特性就是能用很少的线程压出很大的并发量. 原因是它使用了一些操作系统特定的高性能 io 机制, 比如 select, epoll, kqueue 等. 其实它是复用了 redis 的 ae 异步事…

Android APP 常见概念与 adb 命令

adb 的概念 adb 即 Android Debug Bridge 。在窗口输入 adb 即可显示帮助文档。adb 实际上就是在后台开启一个 server&#xff0c;会接收 adb 的命令然后帮助管理&#xff0c;控制&#xff0c;查看设备的状态、信息等&#xff0c;是开发、测试 Android 相关程序的最常用手段。…

Centos系统pnpm升级报错 ERR_PNPM_NO_GLOBAL_BIN_DIR

在 CentOS 系统中使用 pnpm i -g pnpm 报错&#xff1a;ERR_PNPM_NO_GLOBAL_BIN_DIR Unable to find the global bin directory&#xff0c;折腾半天终于解决了。 完整报错信息 [rootVM-8 test]# pnpm i -g pnpm Nothing to stop. No server is running for the store at /roo…

linux20day 排序sort 字符处理cut cpu使用占比排序 awk文本数据处理

目录 1、排序sort参数用法排序&#xff08;-n&#xff09;从大到小 倒叙&#xff08;-r&#xff09; cpu使用占比排序&#xff08;ps aux --sort -%cpu&#xff09; 2、截取到某个字符串 cut3、awk处理文本文件用法&#xff1a;打印等于 和不等于 1、排序sort 经常用于排序 参…

数据分析的基本步骤

了解过数据分析的概念之后&#xff0c;我们再来说下数据分析的常规步骤。 明确目标 首先我们要确定一个目标&#xff0c;即我们要从数据中得到什么。比如我们要看某个指标A随时间的变化趋势&#xff0c;以期进行简单的预测。 数据收集 当确定了目标之后&#xff0c;就有了取…

js逆向-JS加密破解进阶

目录 一、JS逆向进阶一&#xff1a;破解AES加密 &#xff08;一&#xff09;AES对称加密算法原理 &#xff08;二&#xff09;破解AES加密 &#xff08;三&#xff09;实战&#xff1a;发现报告网 二、JS逆向进阶二&#xff1a;破解RSA加密 &#xff08;一&#xff09;RS…