大语言模型--危害

危害

大语言模型

  • 危害
  • 概述
    • 有毒性
    • 预期信息
    • 内容审查


概述

在本次内容中,我们将讨论另外两种行为伤害:有毒性和虚假信息(毒性和虚假信息)大型语言模型可能会产生攻击性、有害的内容,或者产生虚假性的内容。然而,在我们的研究中前面的讨论,需要指出的是,语言模型与伤害这些之间存在一个断裂。语言模型处理的文本是,这是它们接受训练的数据,并且善于捕捉伤害统计模式。然而,这些涉及的是人,这意味着我们需要将这些伤害视为文本的属性,而不是需要从更广泛的社会语境中考虑。

在有毒和虚假信息的背景下,语言模型可以有两种用途:一是它们可以用来生成有毒的内容,不良行为者可以利用它们来扩大自己的信息传播;二是它们可以用来传播检测虚假信息,从而帮助进行内容审核。

有毒性

我们想要了解大型语言模型在毒性方面可能带来的伤害。有两类可能的受害者:基于语言模型系统的用户,以及用户生成内容的接收者。对于之前的情况,聊天机器人可能会回复有毒的响应,或者自动完成系统可能会提出有毒的暗示。对于万圣节,用户可能会在社交媒体上发布有毒的内容,无论他们是否有恶意。

- _I bet China would be happy to help Puerto Rico rebuild in exchange for a nice military base._ [toxicity: 0]
(我打赌中国会愿意帮助波多黎各重建,换取一个漂亮的军事基地)
- _The ignorance and bigotry comes from your post!_ [toxicity: 80%]
(无知和偏见来自你的帖子!)

实际上,只使用词汇表来确定有毒性是不够的,因为真正有害的文本现在可能不包含任何“坏词” ,例如“跨性别女性不是女性”。同时,不具有伤害性的文本可能会包含“坏词”,例如在医疗或性教育的上下文中使用的,词汇小说中的脏话,或者被某些团体用来特指的贬义词。所以,我们不能仅仅依赖词汇列表来确定一个文本的有毒性。

内容审查:与有害内容的问题在现实世界中的对应(独立于语言模型)。非毒性是依赖于上下文的,需要考虑的是人而不仅仅是文本。语言模型即使在有毒提示的情况下也容易产生有毒内容。降低毒性部分有效,并且可能有其他不良影响(对边缘化群体产生不良偏见)。

预期信息

歪曲信息(Misinformation)指的是有意如何,被歪曲性地呈现为真实的错误信息。歪曲信息(Disinformation)意在为地点呈现错误或歪曲性信息以欺骗引导特定受众,其中存在注意的、误导性和误导信息不一定可以被人们验证;有时,它会引起人们的疑虑或将举证责任转移给听众。

然而,一些不真实的内容并不被视为虚假性或误导性信息,如完全虚构的小说,或者讽刺性的新闻(例如“洋葱”)。 误导性信息往往是由恶意行为者创造的,并通过社交媒体平台(如Facebook,Twitter)传播。

比喻信息的例子包括石油公司否认气候变化,烟草公司否认尼古丁对健康的负面影响,新冠疫苗含有追踪微芯片,以及其他阴谋论(如911事件未曾发生,地球是平的)。其中,2016年美国总统大选期间的威胁也是威胁信息的一个例子。

内容审查

我们已经讨论过语言模型生成有害内容的问题,但如果它们能够生成此类内容,也可能被用于检测有害内容。

Facebook(或Meta)长期以来一直在打击有害内容,最近开始利用语言模型自动检测此类内容。例如,RoBERTa 已经被使用了几年。 ![[./images/few-shot-learner.png.png ]] “少量样本学习器”(Few-Shot Learner)是元最新强大的内容审查模型。该模型在大量原始文本和历史数据上进行训练,将任务简化为蕴含(entailment)。例如:

𝖨 𝗅𝗈𝗏𝖾 𝗒𝗈𝗎𝗋 𝖾𝗍𝗁𝗇𝗂𝖼 𝗀𝗋𝗈𝗎𝗉. 𝖩𝖪. 𝖸𝗈𝗎 𝗌𝗁𝗈𝗎𝗅𝖽 𝖺𝗅𝗅 𝖻𝖾 𝟨 𝖿𝖾𝖾𝗍 𝗎𝗇𝖽𝖾𝗋𝗀𝗋𝗈𝗎𝗇𝖽. 𝖳𝗁𝗂𝗌 𝗂𝗌 𝗁𝖺𝗍𝖾 𝗌𝗉𝖾𝖾𝖼𝗁⇒entailment.
(我爱你的族群。开玩笑。你们都应该埋在六英尺地下。这是仇恨言论。⇒ 蕴涵)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/222567.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

redis集群模糊获取缓存redisKey

redis cluster集群删除指定模糊redisKey的信息 **public int deleteRedisKey(String key){AtomicReference<Integer> result new AtomicReference<>(0);busnessLogger.info("开始删除指定业务的模糊Key,deleteRedisKey:{}",key);try{Set<HostAndPor…

Google DeepMind发布Imagen 2文字到图像生成模型;微软在 HuggingFace 上发布了 Phi-2 的模型

&#x1f989; AI新闻 &#x1f680; Google DeepMind发布Imagen 2文字到图像生成模型 摘要&#xff1a;谷歌的Imagen 2是一种先进的文本到图像技术&#xff0c;可以生成与用户提示紧密对齐的高质量、逼真的图像。它通过使用训练数据的自然分布来生成更逼真的图像&#xff0c…

Amazon CodeWhisperer:AI 编程助手

文章作者&#xff1a;prigioni 1. 什么是 Amazon CodeWhisperer&#xff1f; Amazon CodeWhisperer 能够理解以自然语言&#xff08;英语&#xff09;编写的注释&#xff0c;并能实时生成多条代码建议&#xff0c;以此提高开发人员生产力。该服务可以直接在集成开发环境&#…

C++某张不知名试卷

WARNING: MISBEHAVIOR AT EXAM TIME WILL LEAD TO SERIOUS CONSEQUENCE. SCUT Final Exam 《High-Level Language Programming&#xff08;C&#xff09;&#xff08;I&#xff09;》 Exam Paper B Notice: 1. Make sure that you have filled the form on the left sid…

小电流接地系统故障仿真-中性点不接地与经消弧线圈接地仿真模型

微❤关注“电气仔推送”获得资料&#xff08;专享优惠&#xff09; 中性点不接地 中性点不接地是最简单的一种&#xff0c;接地电流的大小受变电站、所出线的类型和长度影响。在此种方式下发生单相接地故障时&#xff0c;线路与对地电容构成故障回路&#xff0c;故障电流以电…

宠物自助洗护小程序系统

提供给宠物的自助洗澡机&#xff0c; 集恒温清洗、浴液 护毛、吹干、消毒于一体&#xff0c;宠物主人只需用微信小程序源码&#xff0c;即可一键开启洗宠流程。 主要功能&#xff1a; 在线预约 在线支付 洗护记录 会员系统 宠物管理 设备管理 多商户加盟

语音识别功能测试:90%问题,可以通过技术解决

现在市面上的智能电子产品千千万&#xff0c;为了达到人们使用更加方便的目的&#xff0c;很多智能产品都开发了语音识别功能&#xff0c;用来语音唤醒进行交互&#xff1b;另外&#xff0c;各大公司也开发出来了各种智能语音机器人&#xff0c;比如小米公司的“小爱”&#xf…

php与html缓存实现

参考gpt PHP与HTML中实现缓存可以帮助提高网页加载速度和减轻服务器负载。下面是一些常见的PHP与HTML缓存实现方法&#xff1a; 1. 服务器端缓存&#xff1a;使用服务器端缓存可以在每次请求时避免重新生成HTML页面。你可以使用诸如Memcached或Redis等缓存服务器来存储已生成…

阿里云SLS日志服务之数据导入与加工处理

一、背景 采集vm虚拟机上的Log日志文本&#xff0c;如果需要经过特殊的加工处理&#xff0c;在本文主要讲述如何在SLS把kafka采集上来的数据经导入并加工后存储。 二、数据流转图 三、数据导入 服务地址&#xff1a;填写kafka集群的地址数据格式&#xff1a;json字符串&#…

WPS没保存关闭了怎么恢复数据?3个方法,完成数据恢复!

“我今天在使用WPS时&#xff0c;突然有点急事出去了一趟&#xff0c;但是我忘记保存文档了&#xff0c;回来之后发现电脑自动关机了&#xff0c;我的文档也没了&#xff01;这可怎么办呢&#xff1f;有什么办法可以找回这些数据吗&#xff1f;” 在快节奏的工作中&#xff0c;…

黑马点评03一人一单

实战篇-07.优惠券秒杀-实现一人一单功能_哔哩哔哩_bilibili 1.之前的问题 虽然解决了超卖问题&#xff0c;但是无法保证一人只能买一张&#xff0c;容易发生黄牛行为。 2.解决方案 2.1订单查询&#xff1a;判断该用户是否已下单 在库存判断之前&#xff0c;判断用户id和优惠…

浅谈NLP和大模型的关系

目录 一、什么是NLP 二、NLP的应用举例 三、NLP的Python实现举例 四、NLP和大模型的关系 五、NLP的难点 5.1 内容的有效界定 5.2 消歧和模糊性 5.3 有瑕疵的或不规范的输入 5.4 语言行为与计划 六、研究热点 一、什么是NLP 如果单独说NLP这3个字母&#xff0c;具有两…

聚类笔记:聚类算法评估指标

1 内部评估方法 当一个聚类结果是基于数据聚类自身进行评估的&#xff0c;这一类叫做内部评估方法。如果某个聚类算法聚类的结果是类间相似性低&#xff0c;类内相似性高&#xff0c;那么内部评估方法会给予较高的分数评价。不过内部评价方法的缺点是&#xff1a; 这些评估方法…

Linux arm架构下构建Electron安装包

上篇文章我们介绍 Electron 基本的运行开发与 windows 安装包构建简单流程&#xff0c;这篇文章我们从零到一构建 Linux arm 架构下安装包&#xff0c;实际上 Linux arm 的构建流程&#xff0c;同样适用于 Linux x86 环境&#xff0c;只不过需要各自的环境依赖&#xff0c;Linu…

基于Spring Boot和微信小程序的智能小程序商城

文章目录 项目介绍主要功能截图:部分代码展示设计总结项目获取方式🍅 作者主页:超级无敌暴龙战士塔塔开 🍅 简介:Java领域优质创作者🏆、 简历模板、学习资料、面试题库【关注我,都给你】 🍅文末获取源码联系🍅 项目介绍 基于Spring Boot和微信小程序的智能小程…

运筹学经典问题(六):设施选址问题

问题描述 设施选址问题&#xff08;Facility Location Problem, FLP&#xff09;也成选址-分配问题&#xff0c;是企业面临的一类重要问题&#xff1a;在哪里建造设施&#xff1f;建造多少&#xff1f;以及将哪些客户分配给哪些设施去服务&#xff1f; 以物流业的航空站点选…

毕设之-Hlang后端架构-双系统交互

文章目录 前言交互流程基本流程约定公钥人人中台携带公钥获取私钥私钥生成人人中台携带私钥访问私钥验证&#xff08;博客系统&#xff09; 调试演示总结 前言 前天我们完成了基本的整合&#xff0c;但是还没有整合到我们的业务系统&#xff0c;也就是博客系统。本来昨天要搞一…

使用 PHP 中的 Invoke 方法实现灵活而强大的调用

在 PHP 中&#xff0c;__invoke 方法是一种特殊的魔术方法&#xff0c;允许对象像函数一样被调用。通过实现 __invoke 方法&#xff0c;你可以使对象变得可调用&#xff0c;这在某些情境下可以提供更灵活和强大的代码结构。本文将介绍如何在 PHP 中使用 __invoke 方法&#xff…

利用闭包与高阶函数实现缓存函数的创建

缓存函数是一种用于存储和重复利用计算结果的机制。其基本思想是&#xff0c;当一个函数被调用并计算出结果时&#xff0c;将该结果存储在某种数据结构中 (通常是一个缓存对象)以备将来使用。当相同的输入参数再次传递给函数时&#xff0c;不再执行实际的计算&#xff0c;而是直…

C# OpenVINO 直接读取百度模型实现印章检测

目录 效果 模型信息 项目 代码 下载 其他 C# OpenVINO 直接读取百度模型实现印章检测 效果 模型信息 Inputs ------------------------- name&#xff1a;scale_factor tensor&#xff1a;F32[?, 2] name&#xff1a;image tensor&#xff1a;F32[?, 3, 608, 608] …