【Spark精讲】Spark存储原理

目录

类比HDFS的存储架构

Spark的存储架构

存储级别

RDD的持久化机制

RDD缓存的过程

Block淘汰和落盘


类比HDFS的存储架构

  HDFS集群有两类节点以管理节点-工作节点模式运行,即一个NameNode(管理节点)和多个DataNode(工作节点)。

  • Namenode管理文件系统的命名空间。它维护着文件系统树及整棵树内的所有文件和目录。这些信息以两个文件形式永久保存在本地磁盘上:命名空间镜像文件和编辑日志文件。Namenode也记录着每个文件中各个块所在的数据节点信息,但是它并不会永久保存块的位置信息,因为这些信息会在系统启动时根据数据节点信息重建。
  • DataNode负责数据块的读写操作。DataNode在存储数据的时候是按照block为单位读写数据的。block是hdfs读写数据的基本单位。 一个数据块在datanode上以文件形式存储在磁盘上,包括两个文件,一个是数据本身,一个是元数据包括数据块的长度,块数据的校验和,以及时间戳。

Spark的存储架构

Spark的存储模块类似HDFS的架构,分为BlockManager和BlockManagerMaster。

BlockManager负责本节点的数据块的读写操作。BlockManagerMaster负责记录每个节点的元数据信息,如每个数据块都存在于哪些节点上。BlockManager也可以接收BlockManagerMaster发来的信息对本节点的数据进行删除等操作。

BlockManager和BlockManagerMaster之间通过RPC的Endpoint通信。BlockManagerMaster只存在于Driver节点中,BlockManager存在于Driver节点和每个Executor节点。每个Executor中有且仅有一个BlockManager。

Spark将存储的数据进行抽象,每个存储的数据都称为一个Block,每个Block都对应着唯一的id,称为BlockId。在BlockManager中,对数据进行读写都是根据BlockId进行的。如果某个BlockManager中存储了一份数据,BlockManager会将该数据的BlockId和数据的存储状态(BlockStatus)发送至BlockManagerMaster中,从而BlockManagerMaster中即可知道每个BlockId对应的数据都存放在哪些节点中。此外BlockManagerMaster还记录了同一个BlockId都在哪些节点上进行了存储。其中存储的位置信息是使用BlockManagerId表示的,因为根据BlockManagerId即可找到相应的BlockManager。

根据存储的数据分类的不同,使用不同类型的BlockId进行表示:

  1. RDDBlockId:存储RDD某个分区数据,根据RDD的id和分区来确定唯一值。
  2. ShuffleBlockId:存储Shuffle过程Map端生成的数据,使用ShuffleId、Map端分区、Reduce端分区确定唯一值。
  3. BroadcastBlockId:存储广播变量数据。
  4. TaskResultBlockId:存储Task结果。

存储级别

对于同一个Block而已,存到内存还是磁盘只能二居其一,对于RDD而言,由于存在多个分区,缓存时会产生多个Block,有可能有的在内存有的在磁盘。

  1. NONE
  2. DISK_ONLY
  3. MEMORY_ONLY
  4. MEMORY_ONLY_2
  5. MEMORY_ONLY_SER
  6. MEMORY_AND_DISK
  7. MEMORY_AND_DISK_SER
  8. OFF_HEAP

RDD的持久化机制

弹性分布式数据集(RDD)作为 Spark 最根本的数据抽象,是只读的分区记录(Partition)的集合,只能基于在稳定物理存储中的数据集上创建,或者在其他已有的 RDD 上执行转换(Transformation)操作产生一个新的 RDD。转换后的 RDD 与原始的 RDD 之间产生的依赖关系,构成了血统(Lineage)。凭借血统,Spark 保证了每一个 RDD 都可以被重新恢复。但 RDD 的所有转换都是惰性的,即只有当一个返回结果给 Driver 的行动(Action)发生时,Spark 才会创建任务读取 RDD,然后真正触发转换的执行。

Task 在启动之初读取一个分区时,会先判断这个分区是否已经被持久化,如果没有则需要检查 Checkpoint 或按照血统重新计算。所以如果一个 RDD 上要执行多次行动,可以在第一次行动中使用 persist 或 cache 方法,在内存或磁盘中持久化或缓存这个 RDD,从而在后面的行动时提升计算速度。事实上,cache 方法是使用默认的 MEMORY_ONLY 的存储级别将 RDD 持久化到内存,故缓存是一种特殊的持久化。 堆内和堆外存储内存的设计,便可以对缓存 RDD 时使用的内存做统一的规划和管理 (存储内存的其他应用场景,如缓存 broadcast 数据,暂时不在此讨论范围之内)。

RDD 的持久化由 Spark 的 Storage 模块负责,实现了 RDD 与物理存储的解耦合。Storage 模块负责管理 Spark 在计算过程中产生的数据,将那些在内存或磁盘、在本地或远程存取数据的功能封装了起来。在具体实现时 Driver 端和 Executor 端的 Storage 模块构成了主从式的架构,即 Driver 端的 BlockManager 为 Master,Executor 端的 BlockManager 为 Slave。Storage 模块在逻辑上以 Block 为基本存储单位,RDD 的每个 Partition 经过处理后唯一对应一个 Block(BlockId 的格式为 rdd_RDD-ID_PARTITION-ID )。Master 负责整个 Spark 应用程序的 Block 的元数据信息的管理和维护,而 Slave 需要将 Block 的更新等状态上报到 Master,同时接收 Master 的命令,例如新增或删除一个 RDD。

Storage 模块示意图:

在对 RDD 持久化时,Spark 规定了 MEMORY_ONLYMEMORY_AND_DISK 等 7 种不同的存储级别 ,而存储级别是以下 5 个变量的组合:

class StorageLevel private(
private var _useDisk: Boolean, //磁盘
private var _useMemory: Boolean, //这里其实是指堆内内存
private var _useOffHeap: Boolean, //堆外内存
private var _deserialized: Boolean, //是否为非序列化
private var _replication: Int = 1 //副本个数
)

通过对数据结构的分析,可以看出存储级别从三个维度定义了 RDD 的 Partition(同时也就是 Block)的存储方式:

  • 存储位置:磁盘/堆内内存/堆外内存。如 MEMORY_AND_DISK 是同时在磁盘和堆内内存上存储,实现了冗余备份。OFF_HEAP 则是只在堆外内存存储,目前选择堆外内存时不能同时存储到其他位置。
  • 存储形式:Block 缓存到存储内存后,是否为非序列化的形式。如 MEMORY_ONLY 是非序列化方式存储,OFF_HEAP 是序列化方式存储。
  • 副本数量:大于 1 时需要远程冗余备份到其他节点。如 DISK_ONLY_2 需要远程备份 1 个副本。

RDD缓存的过程

RDD 在缓存到存储内存之前,Partition 中的数据一般以迭代器(Iterator)的数据结构来访问,这是 Scala 语言中一种遍历数据集合的方法。通过 Iterator 可以获取分区中每一条序列化或者非序列化的数据项(Record),这些 Record 的对象实例在逻辑上占用了 JVM 堆内内存的 other 部分的空间,同一 Partition 的不同 Record 的空间并不连续。

RDD 在缓存到存储内存之后,Partition 被转换成 Block,Record 在堆内或堆外存储内存中占用一块连续的空间。将Partition由不连续的存储空间转换为连续存储空间的过程,Spark称之为"展开"(Unroll)。Block 有序列化和非序列化两种存储格式,具体以哪种方式取决于该 RDD 的存储级别。非序列化的 Block 以一种 DeserializedMemoryEntry 的数据结构定义,用一个数组存储所有的对象实例,序列化的 Block 则以 SerializedMemoryEntry的数据结构定义,用字节缓冲区(ByteBuffer)来存储二进制数据。每个 Executor 的 Storage 模块用一个链式 Map 结构(LinkedHashMap)来管理堆内和堆外存储内存中所有的 Block 对象的实例,对这个 LinkedHashMap 新增和删除间接记录了内存的申请和释放。

因为不能保证存储空间可以一次容纳 Iterator 中的所有数据,当前的计算任务在 Unroll 时要向 MemoryManager 申请足够的 Unroll 空间来临时占位,空间不足则 Unroll 失败,空间足够时可以继续进行。对于序列化的 Partition,其所需的 Unroll 空间可以直接累加计算,一次申请。而非序列化的 Partition 则要在遍历 Record 的过程中依次申请,即每读取一条 Record,采样估算其所需的 Unroll 空间并进行申请,空间不足时可以中断,释放已占用的 Unroll 空间。如果最终 Unroll 成功,当前 Partition 所占用的 Unroll 空间被转换为正常的缓存 RDD 的存储空间,如下图所示。

Spark Unroll 示意图

在上篇的静态内存管理小节可以看到,在静态内存管理时,Spark 在存储内存中专门划分了一块 Unroll 空间,其大小是固定的,统一内存管理时则没有对 Unroll 空间进行特别区分,当存储空间不足时会根据动态占用机制进行处理。

Block淘汰和落盘

由于同一个 Executor 的所有的计算任务共享有限的存储内存空间,当有新的 Block 需要缓存但是剩余空间不足且无法动态占用时,就要对 LinkedHashMap 中的旧 Block 进行淘汰(Eviction),而被淘汰的 Block 如果其存储级别中同时包含存储到磁盘的要求,则要对其进行落盘(Drop),否则直接删除该 Block。

存储内存的淘汰规则为

  • 被淘汰的旧 Block 要与新 Block 的 MemoryMode 相同,即同属于堆外或堆内内存
  • 新旧 Block 不能属于同一个 RDD,避免循环淘汰
  • 旧 Block 所属 RDD 不能处于被读状态,避免引发一致性问题
  • 遍历 LinkedHashMap 中 Block,按照最近最少使用(LRU)的顺序淘汰,直到满足新 Block 所需的空间。其中 LRU 是 LinkedHashMap 的特性。
  • 落盘的流程则比较简单,如果其存储级别符合_useDisk 为 true 的条件,再根据其_deserialized 判断是否是非序列化的形式,若是则对其进行序列化,最后将数据存储到磁盘,在 Storage 模块中更新其信息。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/220735.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

JFlash烧写单片机bin/hex文件

1,安装压 JLink_Windows_V660c,官网可下载; 2,打开刚刚安装的 J-Flash V6.60c 选择创建新工程“Create a new project”,然后点击StartJ-Flash 点击之后跳出Select device框,选择TI 选择TI后&#xff0c…

TypeScript入门实战笔记 -- 04 什么是字面量类型、类型推断、类型拓宽和类型缩小?

🍍开发环境 1:使用vscode 新建一个 04.Literal.ts 文件,运行下列示例。 2:执行 tsc 04.Literal.ts --strict --alwaysStrict false --watch 3:安装nodemon( 全局安装npm install -g nodemon ) 检测.js文件变化重启项…

谈谈数据归一化与标准化

背景: 归一化(Normalization)和标准化(Standardization)是常用的数据预处理技术,用于将不同范围或不同单位的特征值转换为统一的尺度,以便更好地进行数据分析和模型训练。一句话:消…

Go EASY游戏框架 之 RPC Guide 03

1 Overview easy解决服务端通信问题,同样使用了RPC技术。easy使用的ETCDGRPC,直接将它们打包组合在了一起。随着服务发现的成熟,稳定,简单,若是不用,甚至你也并不需要RPC来分解你的架构。 GRPC 有默认res…

银河麒麟重置密码

桌面版银河麒麟重置密码 1.选择界面按e 出现银河麒麟系统选择的页面,我们点击键盘上的“e”键,进入电脑启动项编辑页 2.编辑启动页 在启动项编辑页面,我们将光标移动到linux这一行的最后,然后输入“init/bin/bash consoletty0”…

给一个容器添加el-popover/el-tooltip内容提示框

效果&#xff1a; html: <div class"evaluate"><div class"list flex-column-center" v-for"(item, index) in evaluateList" :key"index"mouseenter"mouseenterHandler(item)" mouseleave"mouseleaveHandle…

【Vue第5章】vuex_Vue2

目录 5.1 理解vuex 5.1.1 vuex是什么 5.1.2 什么时候使用vuex 5.1.3 案例 5.1.4 vuex工作原理图 5.2 vuex核心概念和API 5.2.1 state 5.2.2 actions 5.2.3 mutations 5.2.4 getters 5.2.5 modules 5.3 笔记与代码 5.3.1 笔记 5.3.2 23_src_求和案例_纯vue版 5.3…

什么是跨站脚本攻击(XSS)?如何防止它?

聚沙成塔每天进步一点点 ⭐ 专栏简介 前端入门之旅&#xff1a;探索Web开发的奇妙世界 欢迎来到前端入门之旅&#xff01;感兴趣的可以订阅本专栏哦&#xff01;这个专栏是为那些对Web开发感兴趣、刚刚踏入前端领域的朋友们量身打造的。无论你是完全的新手还是有一些基础的开发…

【面试】数据库—优化—聚簇索引和非聚簇索引、回表查询

数据库—优化—聚簇索引和非聚簇索引、回表查询 1. 什么是聚簇索引什么是非聚簇索引 ? 聚集索引选取规则: 如果存在主键&#xff0c;主键索引就是聚集索引&#xff1b;如果不存在主键&#xff0c;将使用第一个唯一&#xff08;UNIQUE&#xff09;索引作为聚集索引&#xff1b…

【移动通讯】【MIMO】[P1]【科普篇】

前言&#xff1a; 前面几个月把CA 的技术总体复盘了一下,下面一段时间 主要结合各国一些MIMO 技术的文档,复盘一下MIMO. 这篇主要参考华为&#xff1a; info.support.huawei.com MIMO 技术使用多天线发送和接受信号。主要应用在WIFI 手机通讯等领域. 这种技术提高了系统容量&…

MySQL和Redis有什么区别?

目录 一、什么是MySQL 二、什么是Redis 三、MySQL和Redis的区别 一、什么是MySQL MySQL是一种开源的关系型数据库管理系统&#xff08;RDBMS&#xff09;&#xff0c;它是最流行的数据库之一。MySQL以其高性能、可靠性和易用性而闻名&#xff0c;广泛应用于各种Web应用程序…

ACM-MM2023 DITN详解:一个部署友好的超分Transformer

目录 1. Introduction2. Method2.1. Overview2.2. UFONE2.3 真实场景下的部署优化 3. 结果 Paper: Unfolding Once is Enough: A Deployment-Friendly Transformer Unit for Super-Resolution Code: https://github.com/yongliuy/DITN 1. Introduction CNN做超分的缺点 由于卷…

Leetcode—709.转换成小写字母【简单】

2023每日刷题&#xff08;五十八&#xff09; Leetcode—709.转换成小写字母 实现代码 char* toLowerCase(char* s) {int len strlen(s);for(int i 0; i < len; i) {if(s[i] > A && s[i] < Z) {s[i] tolower(s[i]);}}return s; }运行结果 之后我会持续更…

java全栈体系结构-架构师之路(持续更新中)

Java 全栈体系结构 数据结构与算法实战&#xff08;已更&#xff09;微服务解决方案数据结构模型(openresty/tengine)实战高并发JVM虚拟机实战性能调优并发编程实战微服务框架源码解读集合框架源码解读分布式架构解决方案分布式消息中间件原理设计模式JavaWebJavaSE新零售电商项…

(04730)半导体器件之晶体三极管

晶体三极管的结构和分类 晶体三极管具有三个区、两个PN结&#xff0c;从三个区分别引出三个电极而构成&#xff0c;其结构和符号如图2.1.13所示。 晶体三极管内部的三个区&#xff0c;分别称为发射区、基区和集电区&#xff0c;其中基区十分薄&#xff0c;一般为1um至几十um,掺…

单日30PB量级!火山引擎ByteHouse云原生的数据导入这么做

更多技术交流、求职机会&#xff0c;欢迎关注字节跳动数据平台微信公众号&#xff0c;回复【1】进入官方交流群 近期&#xff0c;火山引擎ByteHouse技术专家受邀参加DataFunCon2023&#xff08;深圳站&#xff09;活动&#xff0c;并以“火山引擎ByteHouse基于云原生架构的实时…

学习笔记 -- TVS管选型参考

一、TVS管基本工作原理 当TVS管(瞬态电压抑制器)两极受到反向瞬态高能量冲击时&#xff0c;能以纳秒(ns)量级的速度&#xff0c;将两极间的高阻抗变为低阻抗&#xff0c;使两极间的电压箝位于一个预定的值&#xff0c;有效地保护电子线路中的元器件。 在浪涌电压作用下&#xf…

ETLCloud详解,如何实现最佳实践及问题排查

ETLCloud介绍 ETLCloud是新一代全域数据集成平台&#xff0c;领先于市场同类产品的数据集成平台(DataOps)&#xff0c;只需单击几下即可完成数据清洗转换、传输入仓等操作&#xff0c;具备高效、智能、一站式的全域数据集成优势&#xff0c;如&#xff1a; 毫秒级实时数据同步 …

UE虚幻引擎中程序无需运行也可调试

首先先新建一个蓝图类&#xff0c;在蓝图类中创建一个Custom event 事件&#xff0c;然后在右侧细节面板中搜索call in editor&#xff0c;编译保存之后&#xff0c;将该蓝图类拖拽到关卡场景中&#xff0c;在细节面板中即可看到该事件的按钮。

车载导航系统UI界面,可视化大屏设计(PS源文件)

大屏组件可以让UI设计师的工作更加便捷&#xff0c;使其更高效快速的完成设计任务。现分享车载导航系统科技风蓝黑简约UI界面、车载系统UI主界面、车载系统科技风UI界面、首页车载系统科技感界面界面的大屏Photoshop源文件&#xff0c;开箱即用&#xff01; 若需 更多行业 相关…