数据结构和算法 - 前置扫盲

数据结构和算法

一、前置扫盲

1、数据结构分类

1.1 逻辑结构:线性与非线性

tip:逻辑结构揭示了数据元素之间的逻辑关系

  • 线性数据结构:元素间存在明确的顺序关系。

    1. 数据按照一定顺序排列,其中元素之间存在一个对应关系,使得它们按照线性顺序排列。
    2. 每个元素都有且仅有一个前驱元素和一个后继元素,除了第一个和最后一个元素外。
    3. 代表:数组、链表、栈、队列、哈希表。
  • 非线性数据结构:元素不是按照序列排列的

    • 元素之间存在多对多的关系,其组织方式不受固定顺序的限制。
    • 非线性数据结构中的元素不是按照序列排列的。
    • 代表:树、堆、图、哈希表。

图例

在这里插入图片描述

1.2 物理结构:顺序与链式

tip:所有数据结构都是基于数组、链表或二者的组合实现的

  • 连续空间存储(顺序)
    1. 特点:数据元素存储在物理空间上是连续的,通过元素的物理地址和相对位置来访问数据。
    2. 优缺点:
      • 优点: 随机访问速度快,存储效率高。
      • 缺点: 插入和删除操作可能涉及大量数据的移动,且需要预先分配连续的内存空间。
    3. 代表:基于数组可实现:栈、队列、哈希表、树、堆、图、矩阵、张量(维度 ≥3 的数组)等。
  • 分散空间存储(链式)
    1. 特点:数据元素存储在物理空间上是分散的,通过指针来连接各个元素。
    2. 优缺点:
      • 优点: 插入和删除操作相对容易,不需要连续的内存空间。
      • 缺点: 不支持快速的随机访问,需要遍历才能找到特定位置的元素。
    3. 代表:基于链表可实现:栈、队列、哈希表、树、堆、图等。

图例

在这里插入图片描述

2、算法效率评估

tip:算法的效率主要评估的是时间和空间,名词称为-时间复杂度和空间复杂度,但是不是统计具体的算法运行时间和使用空间,而是统计算法运行时间和使用空间随着数据量变大时的增长趋势,使用大O计数法表示

2.1 时间复杂度

例子:下列一段代码,分别使用两种方式统计时间复杂度。

void algorithm(int n) {int a = 2;  a = a + 1;  a = a * 2;  for (int i = 0; i < n; i++) {  System.out.println(0);     }
}
2.1.1 统计具体时间
  1. 确定运行平台,包括硬件配置、编程语言、系统环境等,这些因素都会影响代码的运行效率。
  2. 评估各种计算操作所需的运行时间,假如加法操作 + 需要 1 ns ,乘法操作 * 需要 10 ns ,打印操作 print() 需要 5 ns 等。
  3. 统计代码中所有的计算操作,并将所有操作的执行时间求和,从而得到运行时间。
// 在某运行平台下
void algorithm(int n) {int a = 2;  // 1 nsa = a + 1;  // 1 nsa = a * 2;  // 10 ns// 循环 n 次for (int i = 0; i < n; i++) {  // 1 ns ,每轮都要执行 i++System.out.println(0);     // 5 ns}
}

根据以上方法,可以得到算法的运行时间为 (6n+12) ns

统计算法的运行时间既不合理也不现实

  1. 预估时间和运行平台绑定,因为算法需要在各种不同的平台上运行。
  2. 很难获知每种操作的运行时间,这给预估过程带来了极大的难度。
2.1.2 统计增长趋势

“时间增长趋势(是算法运行时间随着数据量变大时的增长趋势)”这个概念比较抽象,我们通过一个例子来加以理解。假设输入数据大小为 n ,给定三个算法 ABC

// 算法 A 的时间复杂度:常数阶
void algorithm_A(int n) {System.out.println(0);
}
// 算法 B 的时间复杂度:线性阶
void algorithm_B(int n) {for (int i = 0; i < n; i++) {System.out.println(0);}
}
// 算法 C 的时间复杂度:常数阶
void algorithm_C(int n) {for (int i = 0; i < 1000000; i++) {System.out.println(0);}
}

在这里插入图片描述

  • 算法 A 只有 1 个打印操作,算法运行时间不随着 n增大而增长。我们称此算法的时间复杂度为“常数阶”。
  • 算法 B 中的打印操作需要循环 n 次,算法运行时间随着 n 增大呈线性增长。此算法的时间复杂度被称为“线性阶”。
  • 算法 C 中的打印操作需要循环 1000000 次,虽然运行时间很长,但它与输入数据大小n 无关。因此 C 的时间复杂度和 A 相同,仍为“常数阶

相较于直接统计算法的运行时间,时间复杂度的特点

  • 时间复杂度能够有效评估算法效率。例如,算法 B 的运行时间呈线性增长,在 n>1 时比算法 A 更慢,在n>1000000时比算法 C 更慢。事实上,只要输入数据大小 n 足够大,复杂度为“常数阶”的算法一定优于“线性阶”的算法,这正是时间增长趋势的含义。
  • 时间复杂度的推算方法更简便。显然,运行平台和计算操作类型都与算法运行时间的增长趋势无关。因此在时间复杂度分析中,我们可以简单地将所有计算操作的执行时间视为相同的“单位时间”,从而将“计算操作运行时间统计”简化为“计算操作数量统计”,这样一来估算难度就大大降低了。
  • 时间复杂度也存在一定的局限性。例如,尽管算法 AC 的时间复杂度相同,但实际运行时间差别很大。同样,尽管算法 B 的时间复杂度比 C 高,但在输入数据大小 n 较小时,算法 B 明显优于算法 C 。在这些情况下,我们很难仅凭时间复杂度判断算法效率的高低。当然,尽管存在上述问题,复杂度分析仍然是评判算法效率最有效且常用的方法。

具体计算方式:使用函数T(n)演变为O(n)表示。

void algorithm(int n) {//每次调用函数执行的次数int a = 1;  // +1a = a + 1;  // +1a = a * 2;  // +1// 循环 n 次for (int i = 0; i < n; i++) { // +1(每轮都执行 i ++)System.out.println(0);    // +1}
}

设算法的操作数量是一个关于输入数据大小 n 的函数,记为T(n),则以上函数的操作数量为
T ( n ) = 3 + 2 n T(n)=3+2n T(n)=3+2n
T(n)是一次函数,说明其运行时间的增长趋势是线性的,因此它的时间复杂度是线性阶,我们将线性阶的时间复杂度记为O(n),这个数学符号称为「大O记号big-O notationJ,表示函数T(n)的「渐近上界asymptotic upper bound」。

  • 代码的时间复杂度:线性阶时间复杂度
  • 函数表示:T(n)=3+2n
  • 线性阶表示:O(3+2n)
    • 输入的n不受控制,可以为任意数,而时间复杂度是很难计算准确的,所以统计的为最差情况的时间复杂度。
    • 假如输入n的数趋近于∞(无穷),那么常数3可以忽略,同理系数2也可以忽略,无穷和2倍无穷不还是无穷吗
    • 所以最终时间复杂度表示为:O(n)

总结:

计数简化技巧:

  1. 忽略T(n) 中的常数项。因为它们都与 n 无关,所以对时间复杂度不产生影响。
  2. 省略所有系数。例如,循环 2n 次、5n+1 次等,都可以简化记为 n 次,因为 n前面的系数对时间复杂度没有影响。
  3. 循环嵌套时使用乘法。总操作数量等于外层循环和内层循环操作数量之积,每一层循环依然可以分别套用第 1. 点和第 2. 点的技巧。
  4. 最差情况判断:当输入数最差情况为n,趋近于无穷大时,最高阶的项将发挥主导作用,其他项的影响都可以忽略。
void algorithm(int n) {int a = 1;  // +1a = a + n;  // +1// +5nfor (int i = 0; i < 5 * n + 1; i++) {System.out.println(0);}// +2nfor (int i = 0; i < 2 * n; i++) {//加n+1for (int j = 0; j < n + 1; j++) {System.out.println(0);}}
}

函数表示: T ( n ) = 2 + 5 n + 2 n ( n + 1 ) = 2 n 2 + 7 n + 3 函数表示:T(n)=2+5n+2n(n+1)=2n^2+7n+3 函数表示:T(n)=2+5n+2n(n+1)=2n2+7n+3

大 O 计数法表示: O ( n 2 ) − − − 当 n − > ∞ , n 2 为主导,除去常数、系数、非主导项,使用 大O计数法表示:O(n^2)---当n->∞,n^2为主导,除去常数、系数、非主导项,使用 O计数法表示:O(n2)n>,n2为主导,除去常数、系数、非主导项,使用


拓展:常见大O类型和图例

时间复杂度: O ( 1 ) < O ( l o g n ) < O ( n ) < O ( n l o g n ) < O ( n 2 ) < O ( 2 n ) < O ( n ! ) 时间复杂度:O(1) < O(logn)<O(n)<O(nlogn)<O(n^2)<O(2^n)<O(n!) 时间复杂度:O(1)<O(logn)<O(n)<O(nlogn)<O(n2)<O(2n)<O(n!)

时间复杂度:常数阶 < 对数阶 < 线性阶 < 线性对数阶 < 平方阶 < 指数阶 < 阶层阶 时间复杂度:常数 阶<对数阶<线性阶<线性对数阶<平方阶<指数阶<阶层阶 时间复杂度:常数阶<对数阶<线性阶<线性对数阶<平方阶<指数阶<阶层阶

在这里插入图片描述

  • 线性阶的操作数量相对于输入数据大小 n以线性级别增长。线性阶通常出现在单层循环中

  • 平方阶的操作数量相对于输入数据大小 n 以平方级别增长。平方阶通常出现在嵌套循环中

  • 生物学的“细胞分裂”是指数阶增长的典型例子:初始状态为 1 个细胞,分裂一轮后变为 2 个,分裂两轮后变为 4 个,以此类推,分裂 n 轮后有 2^n 个细胞,指数阶常出现于递归函数中。

  • 对数阶反映了“每轮缩减到一半”的情况。设输入数据大小为 n ,由于每轮缩减到一半,因此循环次数是 log2⁡n ,即 2^n 的反函数。

    • 在这里插入图片描述
  • 线性对数阶常出现于嵌套循环中

  • 阶乘阶对应数学上的“全排列”问题。给定 n 个互不重复的元素,求其所有可能的排列方案,方案数量为n!,常用于回溯。

2.2 空间复杂度

tip:现在很发达了,内存没以前贵,直接跳过此处

「空间复杂度 space complexity」用于衡量算法占用内存空间随着数据量变大时的增长趋势。这个概念与时间复杂度非常类似,只需将“运行时间”替换为“占用内存空间”。

算法在运行过程中使用的内存空间主要包括以下几种。

  • 输入空间:用于存储算法的输入数据。
  • 暂存空间:用于存储算法在运行过程中的变量、对象、函数上下文等数据。
  • 输出空间:用于存储算法的输出数据。

一般情况下,空间复杂度的统计范围是“暂存空间”加上“输出空间”。

暂存空间可以进一步划分为三个部分。

  • 暂存数据:用于保存算法运行过程中的各种常量、变量、对象等。
  • 栈帧空间:用于保存调用函数的上下文数据。系统在每次调用函数时都会在栈顶部创建一个栈帧,函数返回后,栈帧空间会被释放。
  • 指令空间:用于保存编译后的程序指令,在实际统计中通常忽略不计。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/220146.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Liunx系统挂载磁盘

1.具体步骤 大概五个步骤 添加磁盘磁盘分区格式化分区挂载分区到指定目录设置开机自动挂载 目标将sdb1分区挂载到/data目录 2.添加磁盘 使用lsblk -f命令可以查看当前系统磁盘情况 lsblk -f 可以看到已经有一个磁盘sda&#xff0c;现在我们给虚拟机增加一个磁盘 添加完成后…

数据结构与算法:插入排序

原理 保证区间内排好顺序&#xff0c;逐渐将区间外数据插入到该区间中。 从局部扩散到整体。 第一次&#xff1a;保证0-1范围内有序 arr[0]和arr[1]对比&#xff0c;若arr[0] 大于 arr[1] &#xff0c;交换两个值&#xff0c; 0-1范围内有序。 第二次&#xff1a;保证 0-2 …

力扣题:数字与字符串间转换-12.14

力扣题-12.14 [力扣刷题攻略] Re&#xff1a;从零开始的力扣刷题生活 力扣题1&#xff1a;442. 数组中重复的数据 解题思想&#xff1a;从字符串中能够正确提取数字即可 class Solution(object):def complexNumberMultiply(self, num1, num2):""":type num1:…

2.5 常规游戏中模型通用要求介绍

一、布线和理性 多星点&#xff08;4个及4个以上边的交点&#xff09; 如果是在中模阶段&#xff0c;减少使用多星点&#xff0c;因为会在细分是时出现凸点问题&#xff0c;如果要使用多星点&#xff0c;需要通过布线技巧把它移动至平面处&#xff0c;不要让他出现在倒角边缘。…

科技提升安全,基于DETR【DEtection TRansformer】模型开发构建商超扶梯场景下行人安全行为姿态检测识别系统

在商超等人流量较为密集的场景下经常会报道出现一些行人在扶梯上摔倒、受伤等问题&#xff0c;随着AI技术的快速发展与不断普及&#xff0c;越来越多的商超、地铁等场景开始加装专用的安全检测预警系统&#xff0c;核心工作原理即使AI模型与摄像头图像视频流的实时计算&#xf…

深入理解Java虚拟机---Java内存模型

JMM Java内存模型主内存和工作内存volatile Java内存模型 Java内存模型是Java虚拟机规范中试图定义一种Java内存模型(JMM)来屏蔽掉各种硬件和操作系统的内存访问差异&#xff0c;以实现让Java程序在各种平台上都能达到一致的内存访问效果。可以理解为JMM定义一套在多线程读写共…

计算机网络简答题

面向连接和非连接的服务特点 面向连接的服务&#xff1a;通信双方在进行通信之前&#xff0c;要事先建立一个完整的可以彼此沟通的通道&#xff0c;在通信过程中整个连接的情况可以被实时的监控和管理 面向非链接的服务&#xff1a;不需要预先建立一个联络两个通信节点的连接&a…

智能优化算法应用:基于平衡优化器算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用&#xff1a;基于平衡优化器算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用&#xff1a;基于平衡优化器算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.平衡优化器算法4.实验参数设定5.算法…

每日一题:Leetcode1926.迷宫中离入口最近的出口

给你一个 m x n 的迷宫矩阵 maze &#xff08;下标从 0 开始&#xff09;&#xff0c;矩阵中有空格子&#xff08;用 . 表示&#xff09;和墙&#xff08;用 表示&#xff09;。同时给你迷宫的入口 entrance &#xff0c;用 entrance [entrancerow, entrancecol] 表示你一开始…

HBase 高可用集群详细图文安装部署

目录 一、HBase 安装部署 1.1 Zookeeper 正常部署 1.2 Hadoop 正常部署 1.3 HBase 安装 1.4 HBase 的配置文件 1.4.1 hbase-env.sh 1.4.2 hbase-site.xml 1.4.3 regionservers 1.4.4 创建目录 1.5 HBase 远程发送到其他节点 1.6 HBase 服务的启动 1.6.1 单点…

分类预测 | Matlab实现HPO-GRU【23年新算法】基于猎食者优化算法优化门控循环单元的数据分类预测

分类预测 | Matlab实现DBO-SVM蜣螂算法优化支持向量机的数据分类预测【23年新算法】 目录 分类预测 | Matlab实现DBO-SVM蜣螂算法优化支持向量机的数据分类预测【23年新算法】分类效果基本描述程序设计参考资料 分类效果 基本描述 1.HPO-GRU【23年新算法】基于猎食者优化算法优…

【电子取证:FTK IMAGER 篇】DD、E01系统镜像动态仿真

​ 文章目录 【电子取证&#xff1a;FTK Imager 篇】DD、E01系统镜像动态仿真一、DD、E01系统镜像动态仿真 &#xff08;一&#xff09;使用到的软件 1、FTK Imager (v4.5.0.3)2、VMware Workstation 15 Pro (v15.5.2)&#xff08;二&#xff09;FTK Imager 挂载镜像 1、选择 …

学习深度强化学习---第3部分----RL蒙特卡罗相关算法

文章目录 3.1节 蒙特卡罗法简介3.2节 蒙特卡罗策略评估3.3节 蒙特卡罗强化学习3.4节 异策略蒙特卡罗法 本部分视频所在地址&#xff1a;深度强化学习的理论与实践 3.1节 蒙特卡罗法简介 在其他学科中的蒙特卡罗法是一种抽样的方法。 如果状态转移概率是已知的&#xff0c;则是…

vue的computed中的getter和setter

vue的computed中的getter和setter 定义getter写法setter写法 定义 computed 中可以分成 getter&#xff08;读取&#xff09; 和 setter&#xff08;设值&#xff09;&#xff0c;一般情况下是没有 setter 的&#xff0c;computed 预设只有 getter&#xff0c;也就是只能读取&a…

ajax和Axios快速入门

什么是ajax 概念&#xff1a; Asynchronous JavaScript And XML&#xff0c;异步的JavaScrip和XML&#xff0c;重点在异步。 作用&#xff1a; 1&#xff0c;数据交互&#xff0c;可以通过ajax给服务器发送请求&#xff0c;并获取服务器响应的数据。 2&#xff0c;异步交互&am…

基于Leaflet的Webgis经纬网格生成实践

目录 前言 一、Leaflet.Graticule 1、参数说明 二、集成使用 1、新建网页模板 2、初始化地图对象 3、运行效果 三、源码调用分析 1、参数注入 2、经纬网构建 总结 前言 众所周知&#xff0c;在地球仪上或地图上&#xff0c;经线和纬线相互交织&#xff0c;就构成经纬…

两线制输入馈电型隔离变送器

两线制输入馈电型隔离变送器 产品型号&#xff1a;JSD TA-1021系列 馈电型隔离变送器产品介绍&#xff1a; JSD TA-1021 为两线制输入馈电型高精度隔离变送器&#xff0c;是将输入与输出之间电气绝缘的模拟信号量进行变换、放大、隔离及远传的小型仪表设备&#xff0c;接收仪表…

nodejs项目设置全局变量(global)

文章目录 前言一、使用global二、解决type typeof globalThis has no index signature.ts问题1、新建 /types/global.d.ts文件2、或者直接在入口文件/src/index.ts定义 三、最终效果鼠标放在global上&#xff0c;可显示global的类型生效了~ ![在这里插入图片描述](https://img-…

C语言小游戏之三子棋(可以做期末设计作业)

哈喽大家好&#xff0c;今天为大家带来一个用C语言写的小游戏--三子棋&#xff0c;就是大家小时候用树枝和石子玩的那种游戏&#xff0c;这个小项目可以用于大家的C语言期末设计作业&#xff0c;不会很难&#xff0c;都是C语言基本的操作 下面是游戏截图&#xff1a; 完全可以…

CV计算机视觉每日开源代码Paper with code速览-2023.12.8

点击计算机视觉&#xff0c;关注更多CV干货 论文已打包&#xff0c;点击进入—>下载界面 点击加入—>CV计算机视觉交流群 1.【显著目标检测】Texture-Semantic Collaboration Network for ORSI Salient Object Detection 论文地址&#xff1a;https://arxiv.org//pdf/…