转到力扣
考察知识:字符串、动态规划
这个题目力扣给的难度是中等,感觉是中等难度题目中比较难的一个了,写代码之前理清楚思路再去写,
方法一、动态规划
时间复杂度:O(n2)
空间复杂度:O(n2)
public class Solution {public String longestPalindrome(String s) {int len = s.length();if (len < 2) {return s;}int maxLen = 1;int begin = 0;// dp[i][j] 表示 s[i..j] 是否是回文串boolean[][] dp = new boolean[len][len];// 初始化:所有长度为 1 的子串都是回文串for (int i = 0; i < len; i++) {dp[i][i] = true;}char[] charArray = s.toCharArray();// 递推开始// 先枚举子串长度for (int L = 2; L <= len; L++) {// 枚举左边界,左边界的上限设置可以宽松一些for (int i = 0; i < len; i++) {// 由 L 和 i 可以确定右边界,即 j - i + 1 = L 得int j = L + i - 1;// 如果右边界越界,就可以退出当前循环if (j >= len) {break;}if (charArray[i] != charArray[j]) {dp[i][j] = false;} else {if (j - i < 3) {dp[i][j] = true;} else {dp[i][j] = dp[i + 1][j - 1];}}// 只要 dp[i][L] == true 成立,就表示子串 s[i..L] 是回文,此时记录回文长度和起始位置if (dp[i][j] && j - i + 1 > maxLen) {maxLen = j - i + 1;begin = i;}}}return s.substring(begin, begin + maxLen);}
}
方法二、 中心拓展算法
时间复杂度:O(n2)
空间复杂度:O(1)
方法三、 Manacher 算法
时间复杂度:O(n)
空间复杂度:O(n)