智能优化算法应用:基于帝国主义竞争算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于帝国主义竞争算法3D无线传感器网络(WSN)覆盖优化 - 附代码

文章目录

  • 智能优化算法应用:基于帝国主义竞争算法3D无线传感器网络(WSN)覆盖优化 - 附代码
    • 1.无线传感网络节点模型
    • 2.覆盖数学模型及分析
    • 3.帝国主义竞争算法
    • 4.实验参数设定
    • 5.算法结果
    • 6.参考文献
    • 7.MATLAB代码

摘要:本文主要介绍如何用帝国主义竞争算法进行3D无线传感器网(WSN)覆盖优化。

1.无线传感网络节点模型

本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n , z n ) (x_n,y_n,z_n) (xn,yn,zn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p , z p ) p(x_p,y_p,z_p) p(xp,yp,zp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 , d ( n , p ) ≤ R n 0 , e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 + ( z n − z p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2 + (z_n-z_p)^2} d(n,p)=(xnxp)2+(ynyp)2+(znzp)2 为点和之间的欧式距离。

2.覆盖数学模型及分析

现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , z i , r } node_i=\{x_i,y_i,z_i,r\} nodei={xi,yi,zi,r},表示以节点 ( x i , y i , z i ) (x_i,y_i,z_i) (xi,yi,zi)为圆心,r为监测半径的球,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n ∗ l m*n*l mnl个空间点,空间点的坐标为 ( x , y , z ) (x,y,z) (x,y,z),目标点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 + ( z i − z ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2 + (z_i-z)^2}\tag{3} d(nodei,p)=(xix)2+(yiy)2+(ziz)2 (3)
目标区域内点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为点 ( x , y , z ) (x,y,z) (x,y,z)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , z , n o d e i ) = { 1 , i f d ( n o d e i , p ) ≤ r 0 , e s l e (4) P_{cov}(x,y,z,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,z,nodei)={1,ifd(nodei,p)r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n ∗ l (5) CoverRatio = \frac{\sum P_{cov}}{m*n*l}\tag{5} CoverRatio=mnlPcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。

3.帝国主义竞争算法

帝国主义竞争算法原理请参考:https://blog.csdn.net/u011835903/article/details/108517210
帝国主义竞争算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ∗ l ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n*l}) \tag{6} fun=argmin(1CoverRatio)=argmin(1mnlPcov)(6)

4.实验参数设定

无线传感器覆盖参数设定如下:

%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY*AreaZ
AreaX = 100;
AreaY = 100;
AreaZ = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径

帝国主义竞争算法参数如下:

%% 设定帝国主义竞争优化参数
pop=30; % 种群数量
Max_iteration=30; %设定最大迭代次数
lb = ones(1,3*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N),AreaZ.*ones(1,N)];
dim = 3*N;%维度为3N,N个坐标点

5.算法结果

在这里插入图片描述
在这里插入图片描述

从结果来看,覆盖率在优化过程中不断上升。表明帝国主义竞争算法对覆盖优化起到了优化的作用。

6.参考文献

[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.

7.MATLAB代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/217513.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

图论——二分图

图论——二分图 二分图通俗解释 有一个图,将顶点分成两类,边只存在不同类顶点之间,同类顶点之间设有边。称图 G 为二部图,或称二分图,也称欧图。 性质 二分图不含有奇数环图中没有奇数环,一定可以转换为二…

OpenAI Q* (Q Star)简单介绍

一、Q Star 名称由来 Q* 的两个可能来源如下: 1)Q 可能是指 "Q-learning",这是一种用于强化学习的机器学习算法。 Q 名称的由来*:把 "Q*"想象成超级智能机器人的昵称。 Q 的意思是这个机器人非常善于做决定…

pytest-fixtured自动化测试详解

fixture的作用 1.同unittest的setup和teardown,作为测试前后的初始化设置。 fixture的使用 1.作为前置条件使用 2.fixture的的作用范围 1.作为前置条件使用 pytest.fixture() def a():return 3def test_b(a):assert a3 2.fixture的作用范围 首先实例化更高范围的fixture…

Rust语言GUI库之gtk安装

文章目录 工具链安装管理软件vcpkgvcpkg介绍安装vcpkg 安装gtk遇到的问题Rust其他依赖package-confg 工具链安装管理软件vcpkg vcpkg介绍 在使用C/C编写项目时, 引用第三方库是很麻烦的事, 需要手动下载源码然后编译最后再添加到项目里,配置头文件、lib、dll&…

应用程序映射的 5 个安全优势

现代企业依靠无数的软件应用程序来执行日常运营。这些应用程序相互连接并协同工作以提供所需的服务。了解这些应用程序如何相互交互以及底层基础设施对于任何组织都至关重要。这就是应用程序映射概念的用武之地。 顾名思义,应用程序映射是创建应用程序架构&#xf…

skynet 中 mongo 模块运作的底层原理解析

文章目录 前言总览全流程图涉及模块关系连接数据库函数调用流程图数据库操作函数调用流程图涉及到的代码文件 建立连接SCRAMSASL 操作数据库结语参考链接 前言 这篇文章总结 skynet 中 mongo 的接入流程,代码解析,读完它相信你对 skynet 中的 mongo 调用…

JMeter直连数据库

JMeter直连数据库 使用场景操作步骤 使用场景 用作请求的参数化 登录时需要的用户名,密码可以从数据库中查询获取 用作结果的断言 添加购物车下订单,检查接口返回的订单号,是否与数据库中生成的订单号一致 清理垃圾数据 添加商品后&#xff…

汽车IVI中控开发入门及进阶(十一):ALSA音频

前言 汽车中控也被称为车机、车载多媒体、车载娱乐等,其中音频视频是非常重要的部分,音频比如播放各种格式的音乐文件、播放蓝牙接口的音乐、播放U盘或TF卡中的音频文件,如果有视频文件也可以放出音频,看起来很简单,在windows下音乐播放器很多,直接打开文件就能播放各…

生产派工自动化:MES系统的关键作用

随着制造业的数字化转型和智能化发展,生产派工自动化成为了提高生产效率、降低成本,并实现优质产品生产的关键要素之一。制造执行系统(MES)在派工自动化中发挥着重要作用,通过实时数据采集和智能调度,优化生…

项目一:IIC读写EEPROM AT24C02

回头想了想在工作中调过的EEPROM还挺多的,有M24M02 、M28010 、AT24C02等,今天讲一下AT24C02吧 一、AT24C02简介 1.1 特点 文档已经上传了,需要的同学可以自行下载哈,晚点我会把下载链接附上来。 我大概照着文档翻译了一下&am…

排序算法-快速排序

1.快速排序(递归) 快速排序是 Hoare 于 1962 年提出的一种二叉树结构的交换排序方法,其基本思想为: 任取待排序元素序列中 的某元素作为基准值,按照该排序码将待排序集合分割成两子序列,左子序列中所有元素…

已经写完的论文怎么降低查重率 papergpt

大家好,今天来聊聊已经写完的论文怎么降低查重率,希望能给大家提供一点参考。 以下是针对论文重复率高的情况,提供一些修改建议和技巧: 已经写完的论文怎么降低查重率 背景介绍 在学术界,论文的查重率是评价论文质量的…

mysql的ON DELETE CASCADE 和ON DELETE RESTRICT区别

​​ON DELETE CASCADE​​​ 和 ​​ON DELETE RESTRICT​​ 是 MySQL 中两种不同的外键约束级联操作。它们之间的主要区别在于当主表中的记录被删除时,子表中相关记录的处理方式。 ON DELETE CASCADE: 当在主表中删除一条记录时,所有与之相关的子表中…

Java 入门第二篇,Java发展史

Java 入门第二篇,Java发展史 一,Java之诞生 Java的诞生可以追溯到20世纪90年代初。以下是Java诞生的背景和过程: 背景:在上世纪80年代和90年代初,计算机领域存在着多样化的硬件和操作系统,开发者需要为不同…

计算机操作系统-第十三天

目录 前言 进程通信(IPC) 进程通信的方法 共享存储 消息传递 直接通信方式 间接通信方式(信箱通信方式) 管道通信 本节思维导图 前言 !!!回归!!! …

万界星空科技MES系统中的生产调度流程

MES系统生产调度的目标是达到作业有序、协调、可控和高效的运行效果,作业计划的快速生成以及面向生产扰动事件的快速响应处理是生产调度系统的核心和关键。 为了顺利生成作业计划,需要为调度系统提供完整的产品和工艺信息,MES系统生成作业计…

低多边形植物模型法线贴图

在线工具推荐: 3D数字孪生场景编辑器 - GLTF/GLB材质纹理编辑器 - 3D模型在线转换 - Three.js AI自动纹理开发包 - YOLO 虚幻合成数据生成器 - 三维模型预览图生成器 - 3D模型语义搜索引擎 当谈到游戏角色的3D模型风格时,有几种不同的风格&#xf…

【STM32】DMA直接存储器存取

1 DMA简介 DMA(Direct Memory Access)直接存储器存取 可以直接访问STM32的存储器的,包括运行SRAM、程序存储器Flash和寄存器等等 DMA可以提供外设寄存器和存储器或者存储器和存储器之间的高速数据传输,无须CPU干预,节…

I.MX RT1170双核学习(1):双核通信之MU消息单元详解

在I.MX RT1170中,它有CM7和CM4核,而消息单元(MU)模块使SoC内的两个处理器能够通过MU接口传递消息以进行通信和协调。 文章目录 1 MU特性2 功能描述3 MU通信实例3.1 轮训实现多核通信3.1.1 MU_SetFlags和MU_GetFlags3.1.2 MU_SendMsg和MU_ReceiveMsg3.1.…

路由基本原理

目录 一、路由器概述 二、路由器的工作原理 三、路由表的形成 四、路由配置 1.连接设备 2.进入系统模式 3.进入接口模式 4.配置网络 5.下一跳的设置 6.设置浮动路由 7.设置默认路由 一、路由器概述 路由器(Router)是一种用于连接不同网络或子…