【Linux】进程周边001之进程概念

👀樊梓慕:个人主页

 🎥个人专栏:《C语言》《数据结构》《蓝桥杯试题》《LeetCode刷题笔记》《实训项目》《C++》《Linux》

🌝每一个不曾起舞的日子,都是对生命的辜负


目录

前言

1.基本概念

2.描述进程-PCB

2.1task_struct-Linux中的PCB

2.2task_struct内容分类(成员)

3.查看进程

3.1通过系统目录查看

3.2通过用户级工具ps查看

4.通过系统调用获取进程标识符(PID)

4.1PCB是属于操作系统的还是属于进程的?

 4.2使用getpid和getppid

5.通过系统调用创建进程(fork初识)

5.1fork函数创建子进程

5.2fork的返回值

5.3使用if进行分流


前言

上篇文章我们说学习系统我们要翻越三座大山:进程周边、文件周边以及线程周边。

那今天我们就对第一座大山:进程周边开启攀登之旅💪

本篇文章主要讲解有关进程的基本概念,以及Linux系统下是如何管理进程的,还记得学习管理的六字真言么?没错,对于进程的管理也是先描述,再组织。

之后我们再来学习下如何查看进程以及进程的标识符PID、父进程的标识符PPID。

最后我们初步的认识下fork函数,并利用fork函数实现创建子进程等。

话不多说,直接进入我们今天的学习✍


欢迎大家📂收藏📂以便未来做题时可以快速找到思路,巧妙的方法可以事半功倍。

=========================================================================

GITEE相关代码:🌟fanfei_c的仓库🌟

=========================================================================


1.基本概念

较为官方的说法:

  • 课本概念: 程序的一个执行实例,正在执行的程序等。
  • 内核观点: 担当分配系统资源(CPU时间,内存)的实体。

辅助理解:

对代码进行编译链接产生的文件我们称之为可执行程序(.exe),执行该程序,该程序会被加载到内存中,此时便称之为进程


2.描述进程-PCB

上节课我们学习了管理的概念,并总结为六字真言:先描述,再组织。

那对于操作系统来说,管理进程的方式仍然归结于这六字真言中。

我们也可以将进程描述起来,描述得到的就是进程控制块PCB(process control block)。

PCB就是进程属性的集合(数据结构),里面存储的是进程信息。

管理不是直接管理人,而是管理人的信息;

管理不是直接管理进程,而是管理进程的信息(PCB)。

此时操作系统对进程的管理就转化为对PCB对象的管理。

那对于某个数据结构的管理我们是很熟悉的,假如我们利用链表的方式进行组织,那对于进程的管理说白了就是对链表的增删查改。

换句话说:进程=PCB(内核数据结构)+可执行程序 

未来,所有对进程的控制和操作,都只和进程的PCB有关,和进程的可执行程序没有关系。

如果愿意,你可以把PCB(Node节点)放到任意数据结构中去。


2.1task_struct-Linux中的PCB

task_struct就是在Linux中描述进程的结构体(Linux是C语言编写)。

你可以理解为PCB是操作系统学科抽象的叫法,而在Linux中具体为task_struct。

即task_struct是Linux内核的一种数据结构,它会被装载到RAM(内存)里并且包含进程的信息。


2.2task_struct内容分类(成员)

  • 标示符(PID): 描述本进程的唯一标示符,用来区别其他进程(每次启动都会变化)。
  • 状态: 任务状态,退出代码,退出信号等。
  • 优先级: 相对于其他进程的优先级。
  • 程序计数器(pc): 程序中即将被执行的下一条指令的地址。
  • 内存指针: 包括程序代码和进程相关数据的指针,还有和其他进程共享的内存块的指针。
  • 上下文数据: 进程执行时处理器的寄存器中的数据。
  • I/O状态信息: 包括显示的I/O请求,分配给进程的I/O设备和被进程使用的文件列表。
  • 记账信息: 可能包括处理器时间总和,使用的时钟总和,时间限制,记账号等。
  • 其他信息。

3.查看进程

3.1通过系统目录查看

根目录下的proc目录,/proc下存储着进程信息。

目录名为数字的即为进程信息的目录,每个目录内存储着他们对应的进程信息。

而这些数字对应着该进程的标识符PID。

比如查看标识符PID=1的进程信息:

当我们新建一个普通的进程,并进入该进程所在目录时:

我们可以利用chdir系统调用接口修改工作目录。


3.2通过用户级工具ps查看

实例:ps ajx/ps aux

该命令可以查看所有系统进程。


现在我们来写一段代码并生成可执行程序,执行后变成进程我们如何查看呢?

(1)代码:

#include<stdio.h>
#include<unistd.h>                                                                                                                  int main()
{while(1){printf("I am a process!\n");sleep(1);}return 0;
}

(2)编译后执行:


 (3)打开多窗口方便我们观察


 (4)如何查看单个进程?

首先我们已经知道如何查看系统中所有进程了,即ps ajx,那我们可以利用Linux之前学习的一些指令来显示我们想要查看的单个指令。

实例:ps ajx | head -1 && ps ajx | grep test

对以上指令的解释:


我们来观察一下是否是我们想要的结果:


 我们发现:test进程利用刚才的指令我们得到了该进程的相关信息,但是黄色框内是什么?

其实是grep命令:


 这里也侧面反映出几乎所有独立的指令,就是程序,运行起来也是进程。

这里grep实际也是进程,且该进程内包含有test的信息,所以也显示出来了。

如何去掉这多余信息呢?

实例:ps ajx | head -1 && ps ajx | grep test | grep -v grep

-v选项是反向搜索的意思,即过滤掉包含有grep内容的信息。  


另外我们也可以通过指令对进程进行检测,检测他是否运行:

实例:while :; do ps ajx | head -1 && ps ajx | grep test | grep -v grep; sleep 1;done

观察进程创建和销毁的过程: 


 所以我们发现:进程是有生命的!


4.通过系统调用获取进程标识符(PID)

4.1PCB是属于操作系统的还是属于进程的?

答案是属于操作系统的,虽然PCB记录的是进程的相关信息,但是PCB是由操作系统创建并维护的。

那既然PCB是属于操作系统的,那我们如何查看PCB的信息呢?

在操作系统的那篇文章中我们提到过用户想要获取操作系统的信息,需要调用系统接口。

所以获取进程标识符(PID)等PCB的信息我们需要通过系统调用来获得,所以我们来认识下getpid()。

首先我们利用man getpid查看下命令手册:


我们发现getpid是在2号手册中,利用man man我们知道2号手册中记录的就是系统调用接口。 


 4.2使用getpid和getppid

(1)编写代码:

#include<stdio.h>
#include<unistd.h>
#include<sys/types.h>
int main()
{pid_t id = getpid();while (1){printf("I am a process!pid:%d\n", id);sleep(1);}return 0;
}

(2)执行可执行程序并观察


那我们再来学习一下getppid(获取父进程的进程标识符)。

一般在Linux中,普通进程,都有他的父进程。

每一个子进程都是由父进程创建出来的。 

子进程只能有一个父进程,父进程可以有多个子进程。

每次执行可执行程序,进程标识符会改变(因为每次都是新的进程)。 

那我们来观察一下他的父进程:

(3)编写代码:

#include<stdio.h>
#include<unistd.h>
#include<sys/types.h>
int main()
{pid_t id = getpid();pid_t fid = getppid();while (1){printf("I am a process!pid:%d ppid:%d\n", id, fid);sleep(1);}return 0;
}

(4)执行可执行程序并观察 


我们来查询一下该进程的父进程究竟是什么? 

我们发现该进程的父进程是bash(命令行解释器)。

在命令行启动的进程都是bash的子进程。


5.通过系统调用创建进程(fork初识)

./+可执行程序的方式是一种手动创建进程的方式。fork则是通过系统调用创建进程。

5.1fork函数创建子进程

#include<stdio.h>
#include<sys/types.h>
#include<unistd.h>int main()
{printf("before fork : I am a process,pid:%d,ppid:%d\n", getpid(), getppid());fork();printf("after fork : I am a process,pid:%d,ppid:%d\n", getpid(), getppid());sleep(2);return 0;
}

现象:

 确实如我们所料,fork执行后,创建出了一个子进程。

并且我们发现fork后面的语句执行了两次。

也就是说fork之后,代码共享,从一个进程分为两个分支,一为父,一为子。

 那我们如何知道谁是父谁是子呢?

这就要研究一下fork函数的返回值问题了。

5.2fork的返回值

意思是返回给父进程的是子进程的PID,返回给子进程的是0.

为什么?

  • 因为父:子= 1:n,子找父是很容易的,而父找子必须有子的pid。

两个返回值么?

我们来验证一下:

执行结果: 

也就是说父进程使用该变量就返回子进程的pid,子进程使用就返回0。


提问:fork函数为什么会返回两次? 

当一个函数运行到了最后执行return的时候,这个函数的核心逻辑已经执行完成了!

而fork函数中必然会有创建子进程这一操作,所以在fork函数返回值之前,子进程已经存在了。

所以fork函数会返回两次值写入到变量中。


提问:id怎么可能同一个变量既等于0又等于pid? 

一个进程崩溃会不会影响其他进程呢?答案是不会。

注:任意进程之间是具有独立性的,互相不能影响,即便是父子进程。

子进程被创建时,会继承大部分父进程的属性,即子进程的创建是以父进程为模板的。

模拟场景:父进程或子进程对一共享数据进行修改会发生什么?

前面我们刚说到任意进程之间具有独立性,互相不能影响,所以操作系统必须保证这一点。

假如为子进程修改该数据:子进程会从父进程那拷贝一份到自己这里进行修改,这一行为称之为写时拷贝

父进程修改该数据也如此。

id就是这一共享数据,返回的本质就是写入。

  • linux中可以使用同一变量名,表示不同的内存。

提问:我们创建子进程的目的是什么?

一般而言:我们想让父子做不同的工作。

所以我们就可以利用返回值的不同使用if进行分流


5.3使用if进行分流

#include <stdio.h>
#include <sys/types.h>
#include <unistd.h>
int main()
{int ret = fork();if (ret < 0) {perror("fork");return 1;}else if (ret == 0) { //child的工作代码段}else { //father的工作代码段}sleep(1);return 0;
}

本篇内容就到这里,其中有些知识需要学习到进程地址空间才能深入研究,博主会持续更新Linux系列文章,欢迎大家关注哈!

=========================================================================

如果你对该系列文章有兴趣的话,欢迎持续关注博主动态,博主会持续输出优质内容

🍎博主很需要大家的支持,你的支持是我创作的不竭动力🍎

🌟~ 点赞收藏+关注 ~🌟

=========================================================================

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/213095.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

LeetCode5.最长回文子串

昨天和之前打比赛的队友聊天&#xff0c;他说他面百度面到这道算法题&#xff0c;然后他用暴力法解的&#xff0c;面试官让他优化他没优化出来&#xff0c;这道题我之前没写过&#xff0c;我就想看看我能不能用效率高一点的方法把它做出来&#xff0c;我一开始就在想用递归或者…

设计CPU功能的数字电路

实验目的(1)熟悉Multisim 电路仿真软件的操作界面和功能; (2)掌握逻辑电路综合设计,并采用仿真软件进行仿真。 实验内容1.试设计一个简易CPU功能的数字电路,实验至少要求采用4个74HC/HCT194作为4个存储单元(可以预先对存储单元存储数据),74HC283作为计算单元。请实现…

多维时序 | MATLAB实现RIME-CNN-LSTM-Multihead-Attention多头注意力机制多变量时间序列预测

多维时序 | MATLAB实现RIME-CNN-LSTM-Multihead-Attention多头注意力机制多变量时间序列预测 目录 多维时序 | MATLAB实现RIME-CNN-LSTM-Multihead-Attention多头注意力机制多变量时间序列预测预测效果基本介绍模型描述程序设计参考资料 预测效果 基本介绍 MATLAB实现RIME-CNN-…

idea本地调试hadoop 遇到的几个问题

1.DEA对MapReduce的toString调用报错&#xff1a;Method threw ‘java.lang.IllegalStateException‘ exception. Cannot evaluate org.apache.hadoop.mapreduc 解决方法&#xff1a;关闭 IDEA 中的启用“ tostring() ”对象视图 2.代码和hdfs路径都对的情况下&#xff0c;程序…

架构设计系列之基础:初探软件架构设计

11 月开始突发奇想&#xff0c;想把自己在公司内部做的技术培训、平时的技术总结等等的内容分享出来&#xff0c;于是就开通了一个 Wechat 订阅号&#xff08;灸哥漫谈&#xff09;&#xff0c;开始同步发送内容。 今天&#xff08;12 月 10 日&#xff09;也同步在 CSDN 上开通…

文章解读与仿真程序复现思路——电力系统自动化EI\CSCD\北大核心《面向微电网群的云储能经济-低碳-可靠多目标优化配置方法》

这篇文章的标题涵盖了以下关键信息&#xff1a; 面向微电网群&#xff1a;研究的重点是微电网群&#xff0c;这可能指的是多个微电网系统的集合&#xff0c;而不仅仅是一个单独的微电网。微电网是指由分布式能源资源、储能系统和智能控制组成的小型电力系统&#xff0c;通常能够…

实现加盐加密方法以及java nio中基于MappedByteBuffer操作大文件

自己实现 传统MD5可通过彩虹表暴力破解&#xff0c; 加盐加密算法是一种常用的密码保护方法&#xff0c;它将一个随机字符串&#xff08;盐&#xff09;添加到原始密码中&#xff0c;然后再进行加密处理。 1. 每次调用方法产生一个唯一盐值&#xff08;UUID &#xff09;密码…

UDS诊断 10服务

文章目录 简介诊断会话切换请求和响应1、请求2、子功能3、肯定响应4、否定响应5、特殊的NRC 为什么划分不同会话报文示例UDS中常用 NRC参考 简介 10服务&#xff0c;即 Diagnostic Session Control&#xff08;诊断会话控制&#xff09;服务用于启用服务器中的不同诊断会话&am…

(四) python门面模式

文章目录 4.1 结构型设计模式4.1.1 简介4.1.2 常见的几种结构型设计模式 4.2 理解门面设计模式4.2.1 门面设计模式概述4.2.2 门面设计模式的作用 4.3 UML类图4.3.1 门面4.3.2 系统4.3.3 客户端 4.4 门面模式的代码实现4.4.1 场景&#xff1a;4.4.2 python实现 4.5 原理&#xf…

渲染(iOS渲染过程解析)

渲染 渲染原理 一个硬核硬件科普视频 CPU和GPU CPU&#xff08;Central Processing Unit&#xff09;&#xff1a;现代计算机整个系统的运算核心、控制核心&#xff0c;适合串行计算。GPU&#xff08;Graphics Processing Unit&#xff09;&#xff1a;可进行绘图运算工作的…

安防音频接口选型的高性能国产芯片分析

在人工智能兴起之后&#xff0c;安防市场就成为了其全球最大的市场&#xff0c;也是成功落地的最主要场景之一。对于安防应用而言&#xff0c;智慧摄像头、智慧交通、智慧城市等概念的不断涌现&#xff0c;对于芯片产业催生出海量需求。今天&#xff0c;我将为大家梳理GLOBALCH…

Linux——缓冲区与实现C库的fopen,fwrite,fclose

目录 一.缓冲区 1缓冲区的概念 2.缓冲区存在的意义 3.缓冲区刷新策略 4.什么是刷新&#xff1f; C语言的缓冲区在哪里&#xff1f; ​编辑 仿写C库里的fopen&#xff0c;fclose&#xff0c;fwrite。 mystdio.h mystdio.c main.c(向文件中写入20次msg) 一.缓冲区 1…

b站pwn的学习总结

写的很乱 1.c语言的运行过程 了解了c语言需要经过以上2个过程&#xff08;编译和汇编&#xff09;&#xff0c;才能让机器按指令运行。机器只能听得懂机器码&#xff0c;所以要“汇编”。 那问题就来了&#xff0c;“编译”这个动作有啥用&#xff0c;c语言这种高级语言&…

玩转大数据10:深度学习与神经网络在大数据中的应用

目录 1. 引言&#xff1a;深度学习和神经网络在大数据中的重要性和应用场景 2. 深度学习的基本概念和架构 3. Java中的深度学习框架 3.1. Deeplearning4j框架介绍及Java编程模型 3.2. DL4J、Keras和TensorFlow的集成 4. 大数据与深度学习的结合 4.1. 大数据与深度学…

电脑端同时登录多个微信

1、建立一个txt文件 2、右击微信查看应用的属性&#xff0c;记录文件的位置 3、将步骤二得到的路径按照下方的格式输入到步骤一的文本中 4、保存之后将文本后缀名的.txt改成.bat 5、在未登录微信的情况下&#xff0c;双击即可得到两个微信登录窗口

解决idea 通过build project 手动触发热部署失败

在debug运行项目的过程中&#xff0c;并且保证&#xff08;不添加方法&#xff0c;不修改方法名&#xff09;一定的规则的情况下&#xff0c;可以通过build project 来手动热部署项目&#xff0c;也就是会交换class文件与resouces文件。 设置项 Edit Configurations Modify Op…

计算机图形学理论(1):建模基础

本系列根据国外一个图形小哥的讲解为本&#xff0c;整合互联网的一些资料&#xff0c;结合自己的一些理解。 场景的组成部分 场景相当于一个或多个模型的集合。模型包含以下内容&#xff1a; 结构描述&#xff1a;几何形状&#xff0c;如顶点、纹理坐标等表面描述&#xff1a…

Vue3中的defineModel

目录 一、vue3的defineModel介绍 二、defineModel使用 &#xff08;1&#xff09;在vite.config.js中开启 &#xff08;2&#xff09;子组件 &#xff08;3&#xff09;父组件 一、vue3的defineModel介绍 为什么要使用到defineModel呢&#xff1f;这里有这样一种场景&…

“快速排序:一种美丽的算法混沌”(1.hoare)

欢迎来到我的博客&#xff01;在今天的文章中&#xff0c;我将采用一种独特且直观的方式来探讨我们的主题&#xff1a;我会使用一幅图像来贯穿整篇文章的讲解。这幅精心设计的图表不仅是我们讨论的核心&#xff0c;也是一个视觉辅助工具&#xff0c;帮助你更深入地理解和掌握本…

学习深度强化学习---第2部分----RL动态规划相关算法

文章目录 2.1节 动态规划简介2.2节 值函数与贝尔曼方程2.3节 策略评估2.4节 策略改进2.5节 最优值函数与最优策略2.6节 值迭代与策略迭代2.7节 动态规划求解最优策略 本部分视频所在地址&#xff1a;深度强化学习的理论与实践 2.1节 动态规划简介 态规划有两种思路&#xff1…