12.9_黑马数据结构与算法笔记Java

目录

057 多路递归 e03 杨辉三角2

thinking:二维数组的动态初始化?

057 多路递归 e03 杨辉三角3

058 链表 e01 反转单向链表1

058 链表 e01 反转单向链表2

058 链表 e01 反转单向链表3 递归

058 链表 e01 反转单向链表4

为什么是returnn1呢?也就是新头,而不是一整个链表?

058 链表 e01 反转单向链表5

058 链表 e02 根据值删除节点1

058 链表 e02 根据值删除节点2

058 链表 e03 删除倒数节点1 递归

058 链表 e03 删除倒数节点2

058 链表 e04 有序链表去重1

058 链表 e04 有序链表去重2 递归

058 链表 e05 有序链表去重1 递归

058 链表 e05 有序链表去重2

058 链表 e06 合并有序链表1

搞清楚: p1 = p1.next & p1.next=p2.next

058 链表 e06 合并有序链表2

058 链表 e07 合并多个有序链表

058 链表 e08 查找链表中间节点

058 链表 e09 判断回文链表1

058 链表 e09 判断回文链表2


057 多路递归 e03 杨辉三角2

thinking:二维数组的动态初始化?

Java 中的一维数组以及二维数组(8千字零基础超全详解)_java一维数组和二维数组-CSDN博客

057 多路递归 e03 杨辉三角3

058 链表 e01 反转单向链表1

不断创建新的节点,相当于复制黏贴一份链表了

说明可以单独访问ListNode里的val或者单独访问ListNode里的next。 

a:设置新链表第一个节点的value值,不用设置指针。

b:旧链表的第一个节点

c:创建一个ListNode,值为旧链表第一个节点的value,指向:新链表的头部;并且,更新新链表的头部。这里左侧的n1代表一个节点,是包含vaule值和指向的节点,右侧的n1只有指向的含义。(右侧的n1也可以理解成,现在新建的节点和n1指向的方向相同。)

d:旧链表中的元素变成下一个旧链表元素

直到旧链表所有的元素插入完毕。

       和这里很相似,创建了一个新节点后,再让头部指向新的节点。因此,刚刚案例中,所谓的更新,也可以理解成让n1指向新的节点 ,也就是让旧的节点指向新的节点(1指向2),因为1先插入,2后插入。

058 链表 e01 反转单向链表2

first.next 指向head,其中first.next是指指针。就是这个指针指向head

head更新为first=将first的值赋值给head

058 链表 e01 反转单向链表3 递归

 p.next 为5 这个东西,5.next 是这个东西的指向。所以就是p.next.next

让4指向null,而不是像原先一样还指向5,这样不会造成死循环

058 链表 e01 反转单向链表4

将旧链表的第二个节点移动到新链表的头部

o2.next 指针含义:o2指向o3

那现在让o1.next =o2.next 就是说,让o1像o2一样指向o3,也就是说,o2断开了 。

为什么是returnn1呢?也就是新头,而不是一整个链表?

       因为它每一次传进来的都是一个元素,那就只对这个元素进行加工,并且之前还设置了toString方法,就是为了拼接这些元素的。 

-----------------------------------------------第二天想法--------------------------------------------------------------

噢我好像知道为什么直接返回n1就可以了,我一开始以为,返回n1就只返回一个元素,原来,返回n1就返回n1以及n1后面元素组成的这一条链子。!! 

------------------------------------------------------------------------------------------------------------------------------

058 链表 e01 反转单向链表5

和方法2类似,方法2是面向对象,方法5是面向过程

n1 = o1: n1做了o1该做的事情,或者说o1的责任赋予给n1了。于是乎

o1 = o2 : o1就要回到旧链表中,那它要回到哪里去呢?它要回到的位置就是o2帮他记录的位置。 

058 链表 e02 根据值删除节点1

p1要删除节点的上一个指针

p2要删除节点的指针

理解:

p1.next = p2.next  

是指p1的指针等于p2的指针,而指针的作用是用于指明方向,因此意思为:p1指向的位置是p2指向的位置

p2 = p2.next 

这里的右边是指 p2的下一个节点,整句话的意思是:将p2的下一个所有东西赋予给p2

也意味着p2向后平移了一位(假设现在链表不动,是指针在动)

优化:要不是原来的方案:旧的p2指向的下一位;或者新的方案:删除后,p1指向的下一位

058 链表 e02 根据值删除节点2

返回 p的下一个节点的指针以及值 

针对p.next =removeElements(p.next,val)这一块,左边的含义是:自身的指针要更新一下,不然一直在原地不动。那,需要更新一下的话,那要更新成什么样子的呢?也就是说,这个指针要被赋予的值是什么呢?这个值从哪里来呢?就从右边来的。p.next :下一个节点开始删,removeElements() :删完之后的那个链表,作为我当前节点的链表。

就拿这个做例子,数组是:1,2,6,3,6

现在进行到:1,2,6,3到1,2,6这一步

p.next: 指针现在指着3 那删除之后,应该移动到6 (从下一个节点开始删)

removeElements() :1,2,6(删完之后的那个链表,作为我当前节点的链表)

我们再看,它的方法返回的是 3->null 这样的,所以挺有那感觉。

呜呜尽力了,只能先理解到这里了。

--------------------------------------第二天的思路-------------------------------------------------------

右侧:更新完了。左侧:那就在你更新完之后的下一个节点开始。

----------------------------------------------------------------------------------------------------------------

058 链表 e03 删除倒数节点1 递归

返回 0 代表倒数第0个

返回1 代表倒数第1个

返回2 代表倒数第2个 

如果p==null的话,返回0。也就是说,代表null在倒数第0个位置 

左边和右边的数字分别代表:每个节点,每个节点的下一个节点的倒数位置

如果,传过来的n等于nth(nth:每个节点的下一个节点的倒数位置) 

举个例子:p=3,那nth就是它的下一个节点的倒数位置,也就是4的倒数位置,4的倒数位置是2。现在要删掉4。因此让p=3指向p=5。

对于第一个节点来说,没有上一个节点了。但我们之前处理的办法都是:处理这个节点的下一个节点。因此,节点1 知道节点2 的位置,但是没有人知道节点1在哪里。因此加一个哨兵。

058 链表 e03 删除倒数节点2

方法二:设置两个指针,先让p2走n+1步。之后再让p1,p2一起走,p2走多少步,p1就走多少步,要保持p1和p2的距离保持n+1,直到p2走到null为止。这样,p1的下一个位置就是我要删除的元素。

这里的n=2,是指我要删除的是倒数第二个位置的元素,也就是4这个元素。

 p1.next :p1的指针

p1.next.next:p5

=:让p1的指针指向p5

058 链表 e04 有序链表去重1

为p2赋值 

p1.next = p2.next :p1的指针方向现在改为p2的指针方向。因此,也代表p1向后平移一位。

058 链表 e04 有序链表去重2 递归

方法二:若第一个节点和第二个节点的取值相同的时候,不要第一个节点,要第二个节点。

2和3作比较的时候,若不相同,返回我(2),并且next更新为下一个节点,也就是p=3 

右侧:更新完了。左侧:那就在你更新完之后的下一个节点开始。

好像前面那道题也是差不多这样的意思。 哎哟,好像明白了。

058 链表 e05 有序链表去重1 递归

058 链表 e05 有序链表去重2

058 链表 e06 合并有序链表1

搞清楚: p1 = p1.next & p1.next=p2.next

 第一个是:p1指向  p1下一个指向   的值,也就是p2。也就是指针往后平移一位

第二个是:p1的指针等于p2的指针,也就是 p2指向的方向现在也变成了p1指向的方向,也就是说p1指向了p3

058 链表 e06 合并有序链表2

4.next在8和9之间选择。也就是4.next是这个mergeTwoLists方法得出的结果

 

058 链表 e07 合并多个有序链表

先把多个链表拆分,最后再合成变成一个数组。 

前者:多路递归较多体现

后者:单路递归较多体现,并没有拆分为两个或以上问题,只是相同的问题,但是问题规模减小;了。 

058 链表 e08 查找链表中间节点

奇数情况。

偶数情况。

不管奇数偶数,都是慢指针走一步,快指针走两步。直到快指针走到null或者走到null的前一位,就停止,这个时候,慢指针指的就是中间位置。 

p2 != null要写在前面,因为如果这个条件不成立的话,就不会执行第二个条件了,它的执行是有顺序的。

058 链表 e09 判断回文链表1

噢我好像知道为什么直接返回p1就可以了,我一开始以为,返回p1就只返回一个元素,原来,返回p1就返回p1以及p1后面元素组成的这一条链子。!! 

058 链表 e09 判断回文链表2

使分开的方法合并到一起 

 

方法二:

既找到中间点,同时也让前半部分的元素进行反转。

以上这张图是之前的案例的解释 

部分代码详解:

ListNode o2 =o1.next: 旧头的第二个位置命名为o2

o1.next=n1: o1这个旧头的指针指向n1这个新头,也就是o1所在的元素移动到新队伍当中去了,(看3搬移那里)。

n1 = o1: o1要把责任交给n1了

o1 =  o2:o1要回去旧队伍了。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/211838.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Cisco Packet Tracer】路由器 NAT实验

NAT的实现方式有三种,即静态转换Static Nat、动态转换Dynamic Nat和端口多路复用OverLoad。 静态转换是指内部本地地址一对一转换成内部全局地址,相当内部本地的每一台PC都绑定了一个全局地址。一般用于在内网中对外提供服务的服务器。 [3] 动态转换是指…

改进YOLOv8注意力系列一:结合ACmix、Biformer、BAM注意力机制

🗝️改进YOLOv8注意力系列一:结合ACmix、Biformer、BAM注意力机制 代码ACmixBiFormerBAMBlock加入方法各种yaml加入结构本文提供了改进 YOLOv8注意力系列包含不同的注意力机制以及多种加入方式,在本文中具有完整的代码和包含多种更有效加入YOLOv8中的yaml结构,读者可以获…

Mysql索引一篇就够了

索引 定义 索引是对数据库表中一列或者多列的值进行排序的结构。 目的 数据库索引好比一本书的目录,提高查询效率。但是为表设置索引要付出相应的代价: 增加了数据库的存储空间 在插入和修改时需花费更多的时间(因为索引也要随之变动&#…

C++相关闲碎记录(5)

1、容器提供的类型 2、Array Array大小固定&#xff0c;只允许替换元素的值&#xff0c;不能增加或者移除元素改变大小。Array是一种有序集合&#xff0c;支持随机访问。 std::array<int, 4> x; //elements of x have undefined value std::array<int, 5> x {…

渗透测试——七、网站漏洞——命令注入和跨站请求伪造(CSRF)

渗透测试 一、命令注入二、跨站请求伪造(CSRF)三、命令注入页面之注人测试四、CSRF页面之请求伪造测试 一、命令注入 命令注入(命令执行) 漏洞是指在网页代码中有时需要调用一些执行系统命令的函数例如 system()、exec()、shell_exec()、eval()、passthru()&#xff0c;代码未…

基于ssm在线云音乐系统的设计与实现论文

摘 要 随着移动互联网时代的发展&#xff0c;网络的使用越来越普及&#xff0c;用户在获取和存储信息方面也会有激动人心的时刻。音乐也将慢慢融入人们的生活中。影响和改变我们的生活。随着当今各种流行音乐的流行&#xff0c;人们在日常生活中经常会用到的就是在线云音乐系统…

走迷宫(详细分析)

目录 一、课题描述 输入样例&#xff1a; 输出样例&#xff1a; 二、需求分析 输入的形式和输入值的范围&#xff1a; 输出的形式&#xff1a; 程序所能达到的功能&#xff1a; 三、概要设计 四、流程图 五 、代码详细注释 六、测试数据和结果 一、课题描述 以一个…

freeswitch webrtc video_demo客户端进行MCU的视频会议

系统环境 一、编译服务器和加载模块 二、下载编译指定版本video_demo 三、配置verto.conf.xml 1.修改配置文件 2.重新启动 四、MCU通话测试 1.如何使用video_demo 2.测试结果 五、MCU的通话原理及音频/视频/布局/管理员等参数配置 附录 freeswitch微信交流群 系统环境 lsb_rel…

lv11 嵌入式开发 IIC(下) 20

目录 1 Exynos4412下IIC控制器介绍 1.1 总览 1.2 特征 1.3 工作框图 1.4 其他内容介绍 1.5 四种工作模式寄存器流程 2 IIC寄存器详解 2.1 概述 2.2 控制寄存器 2.3 状态寄存器 2.4 地址寄存器 2.5 数据寄存器 2.6 其他寄存器 3 MPU06050 3.1 简介 3.2 MPU6050主…

HJ103 Redraiment的走法

题目&#xff1a; HJ103 Redraiment的走法 题解&#xff1a; dfs 暴力搜索 枚举数组元素&#xff0c;作为起点如果后续节点大于当前节点&#xff0c;继续向后搜索记录每个起点的结果&#xff0c;求出最大值 public int getLongestSub(int[] arr) {int max 0;for (int i 0…

data_loader返回的每个batch的数据大小是怎么计算得到的?

data_loader是一个通用的术语&#xff0c;用于表示数据加载器或数据批次生成器。它是在机器学习和深度学习中常用的一个概念。 一、data loader 数据加载器&#xff08;data loader&#xff09;是一个用于加载和处理数据集的工具&#xff0c;它可以将数据集划分为小批次&#…

内存学习——堆(heap)

目录 一、概念二、自定义malloc函数三、Debug运行四、heap_4简单分析4.1 heap管理链表结构体4.2 堆初始化4.3 malloc使用4.4 free使用 一、概念 内存分为堆和栈两部分&#xff1a; 栈&#xff08;Stack&#xff09;是一种后进先出&#xff08;LIFO&#xff09;的数据结构&…

AVFormatContext封装层:理论与实战

文章目录 前言一、封装格式简介1、FFmpeg 中的封装格式2、查看 FFmpeg 支持的封装格式 二、API 介绍三、 实战 1&#xff1a;解封装1、原理讲解2、示例源码 13、运行结果 14、示例源码 25、运行结果 2 四、 实战 2&#xff1a;转封装1、原理讲解2、示例源码3、运行结果 前言 A…

文章解读与仿真程序复现思路——电力系统自动化EI\CSCD\北大核心《考虑电力-交通交互的配电网故障下电动汽车充电演化特性》

这个标题涉及到电力系统、交通系统和电动汽车充电的复杂主题。让我们逐步解读&#xff1a; 考虑电力-交通交互的配电网故障&#xff1a; 电力-交通交互&#xff1a; 指的是电力系统和交通系统之间相互影响、相互关联的关系。这可能涉及到电力需求对交通流量的影响&#xff0c;反…

回溯算法之N皇后

一 什么是回溯算法 回溯算法&#xff08;Backtracking Algorithm&#xff09;是一种用于解决组合优化问题的算法&#xff0c;它通过逐步构建候选解并进行验证&#xff0c;以寻找所有满足特定条件的解。回溯算法通常应用于在给定约束条件下枚举所有可能解的问题&#xff0c;如…

Git—文件添加查看删除修改

目录 1.添加文件—场景一 2.查看.git文件 3.添加文件—场景三 4.修改文件 5.版本回退 6.撤销修改 7.删除文件 1.添加文件—场景一 在包含.git的目录下新建⼀个ReadMe文件&#xff0c;我们可以使用 git add 命令可以将文件添加到暂存 区&#xff1a; ●添加一个或多个文…

Matlab数学建模算法之小波神经网络详解

&#x1f517; 运行环境&#xff1a;Matlab &#x1f6a9; 撰写作者&#xff1a;左手の明天 &#x1f947; 精选专栏&#xff1a;《python》 &#x1f525; 推荐专栏&#xff1a;《算法研究》 &#x1f510;#### 防伪水印——左手の明天 ####&#x1f510; &#x1f497; 大家…

存储成本降71%,怪兽充电历史库迁移OceanBase

怪兽充电作为共享充电宝第一股&#xff0c;业务增长迅速&#xff0c;以至于业务架构不停地增加组件。在验证 OceanBase 可以简化架构并带来更大的业务价值后&#xff0c;首次尝试在历史库中使用 OceanBase 替代 MySQL&#xff0c;存储成本降低 71%。本文为怪兽充电运维架构部王…

Docker 入门

Docker 入门 基础 不同操作系统下其安装包、运行环境是都不相同的&#xff01;如果是手动安装&#xff0c;必须手动解决安装包不同、环境不同的、配置不同的问题 而使用Docker&#xff0c;这些完全不用考虑。就是因为Docker会自动搜索并下载MySQL。注意&#xff1a;这里下载…

【C++】输入输出流 ⑥ ( cout 标准输出流对象 | cout 常用 api 简介 | cout.put(char c) 函数 )

文章目录 一、cout 标准输出流对象1、cout 标准输出流对象简介2、cout 常用 api 简介 二、cout.put(char c) 函数1、cout.put(char c) 函数 简介2、代码示例 - cout.put(char c) 函数 一、cout 标准输出流对象 1、cout 标准输出流对象简介 cout 是 标准输出流 对象 , 是 ostrea…