yolov8与yolov5网络对比

回顾一下YOLOv5,不然没机会了

这里粗略回顾一下,这里直接提供YOLOv5的整理的结构图吧:

  1. Backbone:CSPDarkNet结构,主要结构思想的体现在C3模块,这里也是梯度分流的主要思想所在的地方;
  2. PAN-FPN:双流的FPN,必须香,也必须快,但是量化还是有些需要图优化才可以达到最优的性能,比如cat前后的scale优化等等,这里除了上采样、CBS卷积模块,最为主要的还有C3模块(记住这个C3模块哦);
  3. Head:Coupled Head+Anchor-base,毫无疑问,YOLOv3、YOLOv4、YOLOv5、YOLOv7都是Anchor-Base的,后面会变吗?
  4. Loss:分类用BEC Loss,回归用CIoU Loss。

YOLOv5

话不多说,直接YOLOv8吧!

直接上YOLOv8的结构图吧,小伙伴们可以直接和YOLOv5进行对比,看看能找到或者猜到有什么不同的地方?

在这里插入图片描述

下面就直接揭晓答案吧,具体改进如下:

  1. Backbone:使用的依旧是CSP的思想,不过YOLOv5中的C3模块被替换成了C2f模块,实现了进一步的轻量化,同时YOLOv8依旧使用了YOLOv5等架构中使用的SPPF模块;
  2. PAN-FPN:毫无疑问YOLOv8依旧使用了PAN的思想,不过通过对比YOLOv5与YOLOv8的结构图可以看到,YOLOv8将YOLOv5中PAN-FPN上采样阶段中的卷积结构删除了,同时也将C3模块替换为了C2f模块;
  3. Decoupled-Head:是不是嗅到了不一样的味道?是的YOLOv8走向了Decoupled-Head;
  4. YOLOv8抛弃了以往的Anchor-Base,使用了Anchor-Free的思想;
  5. 损失函数:YOLOv8使用VFL Loss作为分类损失,使用DFL Loss+CIOU Loss作为分类损失;
  6. 样本匹配:YOLOv8抛弃了以往的IOU匹配或者单边比例的分配方式,而是使用了Task-Aligned Assigner匹配方式。

1、C2f模块是什么?与C3有什么区别?

我们不着急,先看一下C3模块的结构图,然后再对比与C2f的具体的区别。针对C3模块,其主要是借助CSPNet提取分流的思想,同时结合残差结构的思想,设计了所谓的C3 Block,这里的CSP主分支梯度模块为BottleNeck模块,也就是所谓的残差模块。同时堆叠的个数由参数n来进行控制,也就是说不同规模的模型,n的值是有变化的。

C3

其实这里的梯度流主分支,可以是任何之前你学习过的模块,比如,美团提出的YOLOv6中就是用来重参模块RepVGGBlock来替换BottleNeck Block来作为主要的梯度流分支,而百度提出的PP-YOLOE则是使用了RepResNet-Block来替换BottleNeck Block来作为主要的梯度流分支。而YOLOv7则是使用了ELAN Block来替换BottleNeck Block来作为主要的梯度流分支。

C3模块的Pytorch的实现如下:

class C3(nn.Module):# CSP Bottleneck with 3 convolutionsdef __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):  # ch_in, ch_out, number, shortcut, groups, expansionsuper().__init__()c_ = int(c2 * e)  # hidden channelsself.cv1 = Conv(c1, c_, 1, 1)self.cv2 = Conv(c1, c_, 1, 1)self.cv3 = Conv(2 * c_, c2, 1)  # optional act=FReLU(c2)self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))def forward(self, x):return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), 1))

下面就简单说一下C2f模块,通过C3模块的代码以及结构图可以看到,C3模块和名字思路一致,在模块中使用了3个卷积模块(Conv+BN+SiLU),以及n个BottleNeck。

通过C3代码可以看出,对于cv1卷积和cv2卷积的通道数是一致的,而cv3的输入通道数是前者的2倍,因为cv3的输入是由主梯度流分支(BottleNeck分支)依旧次梯度流分支(CBS,cv2分支)cat得到的,因此是2倍的通道数,而输出则是一样的。

不妨我们再看一下YOLOv7中的模块:

YOLOv7通过并行更多的梯度流分支,放ELAN模块可以获得更丰富的梯度信息,进而或者更高的精度和更合理的延迟。

C2f模块的结构图如下:

我们可以很容易的看出,C2f模块就是参考了C3模块以及ELAN的思想进行的设计,让YOLOv8可以在保证轻量化的同时获得更加丰富的梯度流信息。

C2f模块对应的Pytorch实现如下:

class C2f(nn.Module):# CSP Bottleneck with 2 convolutionsdef __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5):  # ch_in, ch_out, number, shortcut, groups, expansionsuper().__init__()self.c = int(c2 * e)  # hidden channelsself.cv1 = Conv(c1, 2 * self.c, 1, 1)self.cv2 = Conv((2 + n) * self.c, c2, 1)  # optional act=FReLU(c2)self.m = nn.ModuleList(Bottleneck(self.c, self.c, shortcut, g, k=((3, 3), (3, 3)), e=1.0) for _ in range(n))def forward(self, x):y = list(self.cv1(x).split((self.c, self.c), 1))y.extend(m(y[-1]) for m in self.m)return self.cv2(torch.cat(y, 1))

SPPF改进了什么?

这里讲解的文章就很多了,这里也就不具体描述了,直接给出对比图了

上图中,左边是SPP,右边是SPPF。

PAN-FPN改进了什么?

我们先看一下YOLOv5以及YOLOv6的PAN-FPN部分的结构图:

YOLOv5的Neck部分的结构图如下:

YOLOv6的Neck部分的结构图如下:

我们再看YOLOv8的结构图:

可以看到,相对于YOLOv5或者YOLOv6,YOLOv8将C3模块以及RepBlock替换为了C2f,同时细心可以发现,相对于YOLOv5和YOLOv6,YOLOv8选择将上采样之前的1×1卷积去除了,将Backbone不同阶段输出的特征直接送入了上采样操作。

Head部分都变了什么呢?

先看一下YOLOv5本身的Head(Coupled-Head):

而YOLOv8则是使用了Decoupled-Head,同时由于使用了DFL 的思想,因此回归头的通道数也变成了4*reg_max的形式:

对比一下YOLOv5与YOLOv8的YAML

损失函数

对于YOLOv8,其分类损失为VFL Loss,其回归损失为CIOU Loss+DFL的形式,这里Reg_max默认为16。

VFL主要改进是提出了非对称的加权操作,FL和QFL都是对称的。而非对称加权的思想来源于论文PISA,该论文指出首先正负样本有不平衡问题,即使在正样本中也存在不等权问题,因为mAP的计算是主正样本。

q是label,正样本时候q为bbox和gt的IoU,负样本时候q=0,当为正样本时候其实没有采用FL,而是普通的BCE,只不过多了一个自适应IoU加权,用于突出主样本。而为负样本时候就是标准的FL了。可以明显发现VFL比QFL更加简单,主要特点是正负样本非对称加权、突出正样本为主样本。

针对这里的DFL(Distribution Focal Loss),其主要是将框的位置建模成一个 general distribution,让网络快速的聚焦于和目标位置距离近的位置的分布。

DFL 能够让网络更快地聚焦于目标 y 附近的值,增大它们的概率;

DFL的含义是以交叉熵的形式去优化与标签y最接近的一左一右2个位置的概率,从而让网络更快的聚焦到目标位置的邻近区域的分布;也就是说学出来的分布理论上是在真实浮点坐标的附近,并且以线性插值的模式得到距离左右整数坐标的权重。

样本的匹配

标签分配是目标检测非常重要的一环,在YOLOv5的早期版本中使用了MaxIOU作为标签分配方法。然而,在实践中发现直接使用边长比也可以达到一阿姨给你的效果。而YOLOv8则是抛弃了Anchor-Base方法使用Anchor-Free方法,找到了一个替代边长比例的匹配方法,TaskAligned。

为与NMS搭配,训练样例的Anchor分配需要满足以下两个规则:

  1. 正常对齐的Anchor应当可以预测高分类得分,同时具有精确定位;
  2. 不对齐的Anchor应当具有低分类得分,并在NMS阶段被抑制。
    基于上述两个目标,TaskAligned设计了一个新的Anchor alignment metric 来在Anchor level 衡量Task-Alignment的水平。并且,Alignment metric 被集成在了 sample 分配和 loss function里来动态的优化每个 Anchor 的预测。
Anchor alignment metric:

分类得分和 IoU表示了这两个任务的预测效果,所以,TaskAligned使用分类得分和IoU的高阶组合来衡量Task-Alignment的程度。使用下列的方式来对每个实例计算Anchor-level 的对齐程度:

s 和 u 分别为分类得分和 IoU 值,α 和 β 为权重超参。
从上边的公式可以看出来,t 可以同时控制分类得分和IoU 的优化来实现 Task-Alignment,可以引导网络动态的关注于高质量的Anchor。

Training sample Assignment:

为提升两个任务的对齐性,TOOD聚焦于Task-Alignment Anchor,采用一种简单的分配规则选择训练样本:对每个实例,选择m个具有最大t值的Anchor作为正样本,选择其余的Anchor作为负样本。然后,通过损失函数(针对分类与定位的对齐而设计的损失函数)进行训练。

参考

[1].https://github.com/uyolo1314/ultralytics.

[2].https://github.com/meituan/YOLOv6.

[3].https://arxiv.org/abs/2209.02976.

[4].https://github.com/PaddlePaddle/PaddleDetection.

[5].https://github.com/PaddlePaddle/PaddleYOLO.

[6].https://github.com/open-mmlab/mmyolo.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/211465.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

OFDM模糊函数仿真

文章目录 前言一、OFDM 信号及模糊函数1、OFDM 信号表达式2、模糊函数表达式 二、MATLAB 仿真1、MATLAB 核心源码2、仿真结果①、OFDM 模糊函数②、OFDM 距离模糊函数③、OFDM 速度模糊函数 前言 本文进行 OFDM 的仿真,首先看一下 OFDM 的模糊函数仿真效果&#xf…

【vim】常用操作

用的时候看看,记太多也没用,下面都是最常用的,更多去查文档vim指令集。 以下均为正常模式下面操作,正在编辑的,先etc一下. 1/拷贝当前行 yy,5yy为拷贝包含当前行往下五行 2/p将拷贝的东西粘贴到当前行下…

Java、JDK、JRE、JVM

Java、JDK、JRE、JVM 一、 Java 广义上看,Kotlin、JRuby等运行于Java虚拟机上的编程语言以及相关的程序都属于Java体系的一员。从传统意义上看,Java社区规定的Java技术体系包括以下几个部分: Java程序设计语言各种硬件平台上的Java虚拟机实…

【力扣】移除链表元素203

目录 1.前言2. 题目描述3. 题目分析3.1 不带哨兵位3.2 带哨兵位 4. 附代码4.1 不带哨兵位4.2 带哨兵位 1.前言 这里开始介绍从网上一些刷题网站上的题目,在这里做一些分享,和学习记录。 先来介绍一些力扣的OJ题目。 这里的OJ就是我们不需要写主函数&…

数据表记录的操作

一、数据添加 1、打开SSMS,附加数据库(数据库文件在自己的文件夹下面),并进行下面的设置: (1)设置“部门信息”表中的“编号”为主键(SSMS) 首先建立好所需的数据库库…

华为OD机试 - 生成哈夫曼树(Java JS Python C)

题目描述 给定长度为 n 的无序的数字数组,每个数字代表二叉树的叶子节点的权值,数字数组的值均大于等于1。 请完成一个函数,根据输入的数字数组,生成哈夫曼树,并将哈夫曼树按照中序遍历输出。 为了保证输出的二叉树中序遍历结果统一,增加以下限制: 二叉树节点中,左节…

为 Compose MultiPlatform 添加 C/C++ 支持(3):实战 Desktop、Android、iOS 调用同一个 C/C++ 代码

theme: serene-rose 前言 在本系列的前两篇文章中我们已经学会了如何在 kotlin native 平台(iOS)使用 cinterop 调用 C/C 代码。以及在 jvm 平台(Android、Desktop)使用 jni 调用 C/C 代码,并且知道了如何自动编译 A…

Git 五分钟教程速度入门

Git 五分钟教程速度入门 分类 编程技术 许多人认为 Git 太混乱,或认为它是一种复杂的版本控制系统,其实不然,这篇文章有助于大家快速上手使用 Git。 入门 使用Git前,需要先建立一个仓库(repository)。您可以使用一个已经存在的…

Win10操作系统安装Python

1 Python解释器下载 1.1 安装环境 Windows 10 专业工作站版22H2 python-3.9.6-amd64.exe 1.2 下载地址 Python官网:Welcome to Python.org Python镜像:CNPM Binaries Mirror 2 Python解释器安装 2.1 Install Python 3.9.6 (64-bit)界面 双击运行下…

【数据结构】面试OJ题———栈|队列|互相实现|循环队列|括号匹配

目录 1. 有效的括号 思路: 2.用队列实现栈 思路: 3.用栈实现队列 思路: 4.设计循环队列 思路: 1. 有效的括号 20. 有效的括号 - 力扣(LeetCode) 给定一个只包括 (,),{&…

Hive SQL间隔连续问题

问题引入 下面是某游戏公司记录的用户每日登录数据, 计算每个用户最大的连续登录天数,定义连续登录时可以间隔一天。举例:如果一个用户在 1,3,5,6,9 登录了游戏,则视为连续 6 天登录。 id dt1001 2021-12-121002 2021-12-12…

visual studio code 好用的插件

vscode-icons Better comments 该插件对不同类型的注释会附加了不同的颜色,更加方便区分,帮助我们在代码中创建更人性化的注释。 Error Lens Error Lens插件是一款可以检测你编写的代码的语法错误,并且会显示出对语法错误的诊断信息…

RCNN 学习

RCNN算法流程 RCNN算法流程可分为4个步骤 一张图像生成1K~2K个候选区域(使用Selective Search方法)对每个候选区域,使用深度网络图特征特征送入每一类的SVM分类器,判别是否属于该类使用回归期器细修正候选框位置 1.候选区域的生…

ChatGPT是科学还是艺术?

OpenAI最近谈到GPT4变懒的问题,说“它更像是多人共同参与的艺术创作”,那到底大模型是科学还是艺术?

公式识别任务各个链条全部打通

目录 引言公式识别任务是什么?公式识别任务解决方案初探使用建议写在最后 引言 随着LaTeX-OCR模型转换问题的解决,公式识别任务中各个链条已经全部打通。小伙伴们可以放开膀子干了。 解决业界问题的方案,并不是单独训练一个模型就完事了&am…

如何确认网站是否有漏洞,如何找出网站存在的漏洞,找到漏洞该如何处理

如何确认网站或者服务器是否有漏洞 判断一个网站是否是存在漏洞的方法: 1.可以借助德迅云安全漏洞扫描功能来检查漏洞。 2.打开德迅云安全首页,点击最上面导航栏中的“安全产品”。 3.滑到“漏洞扫描”,选择“产品价格”服务。 4.选择您需…

【力扣】141和142环形链表

141.环形链表 法一:快慢指针 思路: 用两个指针slow,fast,后者能比前者多走一步路,那判断是不是有环,只需要判断是否会相遇。 就是有一个能比乌龟跑2倍快的兔子,两小只都在有环的路上跑,那是不是肯定会相…

golang开发之个微机器人的二次开发

简要描述: 下载消息中的文件 请求URL: http://域名地址/getMsgFile 请求方式: POST 请求头Headers: Content-Type:application/jsonAuthorization:login接口返回 参数: 参数名必选类型…

java基础之TreeMap详解

TreeMap详解 TreeMap是Map接口的一个实现类,底层基于红黑树的实现,按照key的顺序存储 TreeMap 从继承结构可以看到TreeMap除了继承了AbstractMap类,还实现了NavigableMap接口,而NavigableMap接口是继承自SortedMap接口的&#xff…

使用Vue3+Typescript手写一个日历签到组件

设计理念 昨天写了个简单美观的日历签到组件,使用的是Vue3TypeScript,大概逻辑是先找到本月份第一天是周几,然后开始填充月份日期:weeksArray:[[]]:之后渲染到表格中,对于签到事件触发则先判断是否是今天且还未没有签…