Linux系统---简易伙伴系统

顾得泉:个人主页

个人专栏:《Linux操作系统》  《C/C++》  《LeedCode刷题》

键盘敲烂,年薪百万!


一、题目要求

1.采用C语言实现

2.伙伴系统采用free_area[11]数组来组织。要求伙伴内存最小为一个页面,页面大小为4KB,最大为4MB,即1024个页面。描述一个空闲伙伴内存块的数据结构为

struct chunk
{unsigned int power;  //内存块大小的2次幂指数,如12,13,...,22unsigned int start;   //内存块的起始地址struct chunk* next;  //后向指针Struct chunk* prev;  //前向指针}

3.如何辨识两个内存块c1和c2互为伙伴(buddy)?

  条件1:c1.power=c2.power,即两个块的大小相同;

  条件2:c1和c2的地址start(二进制)的第power位不同,其他位完全相同。比如,大小为256KB的两个伙伴,一个地址为0x0000,0000,另一个为0x0004,0000,这两个地址的第18位(二进制位,从0开始起位)一个为0,一个为1,其余位完全相同,因此它们互为buddy。

       再如,大小为256KB的两个伙伴,一个地址为0x0008,0000,另一个为0x000C,0000,它们的第power位,即第18位一个为0,一个为1,其余位完全相同。

       而地址为0x4,0000和0x8,0000的chunk不是伙伴,尽管它们是相邻的。

       因此可以设计判断两个chunk是否是伙伴的函数:

int isBuddy(struct chunk* c1, struct chunk* c2){if(c1->power!=c2->power)return 0;if((c1->start^c2->start)>>c1->power!=1) //先异或,再移位return 0;return 1;}

二、模块描述

       本文实现了一个内存管理程序,用于分配和释放内存块。它使用了内存池技术,通过将内存块划分为大小为2^n的块来提高内存分配的效率。

程序中定义了一个结构体chunk,表示内存块,包含以下成员变量:

  • power:表示内存块的大小,即2^n。
  • start:表示内存块的起始地址。
  • next:指向下一个内存块的指针。
  • prev:指向上一个内存块的指针。

       程序还定义了一个全局数组free_area,用于存储空闲的内存块。数组的索引表示内存块的大小,数组的元素是指向对应大小的内存块链表的头指针。

程序提供了以下函数:

  • is_buddy(struct chunk *c1 , struct chunk *c2):判断两个内存块是否为“伙伴”关系,即它们的power相同且它们的起始地址相邻。
  • init():初始化内存池,将最大内存块分配给free_area[8]
  • pick(unsigned int k):从free_area中选择一个大小为2^k的内存块,并将其分割成两个大小为2^(k-1)的内存块。
  • allocate(unsigned int req):请求分配一个大小为req字节的内存块,如果无法满足请求,则返回NULL。
  • release(struct chunk *c):释放一个内存块,将其与相邻的伙伴内存块合并,并更新free_area
  • check():打印当前内存池的状态,包括每个大小的内存块链表。

       在main()函数中,首先调用init()函数初始化内存池,然后依次请求分配100KB、256KB和500KB的内存块,并打印分配前后的内存池状态。最后,释放这些内存块,并再次打印内存池状态。


三、代码实现

#include <stdio.h>
#include <stdlib.h>struct chunk{unsigned int power;unsigned int start;struct chunk *next;struct chunk *prev;
};struct chunk* free_area[11];int is_buddy(struct chunk *c1 , struct chunk *c2)
{if(c1 -> power != c2 -> power) return 0;if((c1 -> start ^ c2 -> start) >> c1 -> power != 1) return 0;return 1;
}void init()
{for(int i = 0 ; i < 11 ; i ++)free_area[i] = NULL;struct chunk *max_chunk = (struct chunk*) malloc(sizeof(struct chunk));max_chunk -> power = 20;max_chunk -> start= 0;max_chunk -> next = NULL;max_chunk -> prev = NULL;free_area[8] = max_chunk;
}struct chunk *pick(unsigned int k)
{struct chunk *c = NULL;struct chunk *left = NULL;struct chunk *right = NULL;int i;for(i = k ; i <= 10 ; i ++){if(free_area[i] != NULL){c = free_area[i];free_area[i] = c -> next;break;}}if(i > 10){printf("Failed to pick up a trunk\n");return NULL;}for(int j = i - 1 ; j >= k ; j --){left = (struct chunk*)malloc(sizeof(struct chunk));left -> power = c -> power - 1;left -> start = c -> start;left -> next = free_area[j];left -> prev = NULL;if(free_area[j] != NULL){free_area[j] -> prev = left;}free_area[j] = left;right = (struct chunk *) malloc(sizeof (struct chunk));right -> power = c -> power - 1;right -> start = c -> start + (1 << right -> power);right -> next = NULL;right -> prev = NULL;free(c);c = right;}return c;
}struct chunk * allocate(unsigned int req){unsigned int power = 0;while((1 << power) < req)power ++;return pick(power - 12);}void release(struct chunk *c)
{unsigned int k = c -> power - 12;struct chunk * buddy = NULL;int merged = 1;while(merged){merged = 0;buddy = free_area[k];while(buddy != NULL){if(is_buddy(c , buddy)){c -> power ++;if(buddy -> prev == NULL)free_area[k] = buddy -> next;else buddy -> prev -> next = buddy -> next;if(buddy -> next != NULL)buddy -> next -> prev = buddy -> prev;if(c -> start > buddy -> start) c -> start = buddy -> start;free(buddy);merged = 1;k ++;break;}buddy = buddy -> next;}}c -> next = free_area[k];if(free_area[k] != NULL)free_area[k] -> prev = c;free_area[k] = c;
}void check()
{for(int i = 0 ; i < 11 ; i ++){printf("free_area[%d]: " , i);struct chunk * chunk = free_area[i];while(chunk != NULL){printf("(%u  , %x) ->" , chunk -> power , chunk -> start);chunk = chunk -> next;}printf("NULL\n");}printf("\n");
}int main()
{init();printf("inintal state\n");check();struct chunk *c100 = allocate(100 * 1024);printf("ask for 100kb allocate\n");check();struct chunk *c256 = allocate(256 * 1024);printf("ask for 256kb allocate\n");check();struct chunk *c500 = allocate(500 * 1024);printf("ask for 500kb allocate\n");check();release(c100);printf("release c100\n");check();release(c256);printf("release c256\n");check();release(c500);printf("release c500\n");check();
}

四、结果展示

首先开辟了一块1M大小的空间:

请求分配100KB的内存块:

请求分配256KB的内存块:

请求分配500KB的内存块:

释放100KB的内存块:

释放256KB的内存块:

释放500KB的内存块:

到此所有操作就结束了。


结语:Linux系统中实现简易的伙伴系统的分享到这里就结束了,希望本篇文章的分享会对大家的学习带来些许帮助,如果大家有什么问题,欢迎大家在评论区留言~~~  

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/211136.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

我在Vscode学OpenCV 图像处理二(滤除噪声干扰)

图像处理二 滤除噪声干扰三、噪声3.1图像噪声3.2 滤波3.2.1均值滤波&#xff08;1&#xff09;锚点&#xff08;2&#xff09;中心点&#xff08;下面第3小点会详细解释&#xff09;&#xff08;3&#xff09;核的大小奇偶数的区别&#xff08;1&#xff09;举例奇偶的例子&…

【工具使用-JFlash】如何使用Jflash擦除和读取MCU内部指定扇区的数据

一&#xff0c;简介 在调试的过程中&#xff0c;特别是在调试向MCU内部flash写数据的时候&#xff0c;我们常常要擦除数据区的内容&#xff0c;而不想擦除程序取。那这种情况就需要擦除指定的扇区数据即可。本文介绍一种方法&#xff0c;可以擦除MCU内部Flash中指定扇区的数据…

六级高频词汇1

目录 高频词汇 参考连接 高频词汇 1. alter v. 改变&#xff0c;改动&#xff0c;变更 2. burst vi. n. 突然发生&#xff0c;爆裂 3. dispose vi. 除掉&#xff1b;处置&#xff1b;解决&#xff1b;处理(of) 4. blast n. 爆炸&#xff1b;气流 vi. 炸&#xff0c;炸掉 …

【win10用vim开发stm32】二、vimspector的单片机调试

▲ 我的vim配置仓库: gitee&#xff0c;vim相关优先在gitee更新&#xff0c;博客vim专栏作为部分补充和使用说明 ▲ 本文提供vimspector调试的一个示例&#xff0c;和keil的调试功能比当然还是有很大差距&#xff0c;不过简单的调试功能如单步、复位、运行这些都跑通了&#xf…

Unity打包到Webgl平台以及遇到的问题

Unity打包到Webgl平台以及遇到的问题 参考网站 Unity打包WebGL的全过程及在打包和使用过程中会遇到的问题(本地测试)-CSDN博客 unity打包到Webgl 并配置能正常运行 这里我用的是Unity2022.3.3f1c1版本 有两种方法 1、配置本地web服务 2、安装vsCode>添加插件LiveServe…

AI仿写软件大全,当然热门的仿写软件

在创作过程中&#xff0c;往往需要大量的灵感和原创性&#xff0c;而AI仿写软件便提供了一种高效、智能的解决方案。本文旨在专心分享AI仿写软件有哪些&#xff0c;并为大家解析哪几款好用的AI仿写软件。 AI仿写的使用 随着互联网的快速发展&#xff0c;内容创作需求不断增长&…

Rellax.js,一款超酷的 JavaScript 滚动效果库

嗨&#xff0c;大家好&#xff0c;欢迎来到猿镇&#xff0c;我是镇长&#xff0c;lee。 又到了和大家见面的时间&#xff0c;今天和大家分享一款轻松实现视差滚动效果的 JavaScript 库——Rellax.js。无需大量的配置&#xff0c;即可为你的网站增色不少。 什么是Rellax.js&am…

奥威亚教学视频应用云平台 VideoCover任意文件上传漏洞复现

0x01 产品简介 广州市奥威亚电子科技有限公司教学视频应用云平台是一个专门为教育机构和个人教师设计的在线学习平台。该平台提供丰富的教学资源和功能,旨在提升教学效果和学习体验。 0x02 漏洞概述 奥威亚教学视频应用云平台 VideoCover.aspx接口处存在任意文件上传漏洞,未…

数字逻辑电路基础-组合逻辑电路之4位先行进位加法器

文章目录 一、问题描述二、verilog源码三、仿真结果一、问题描述 前面介绍4位行波进位全加器(串行加法器)的原理及verilog实现,但是它是一种串行加法器,当位数多时,比如32位的二进制数相加,由于进位逐位从低位向高位传递,这会造成相当大的延迟。对于需要快速加法运算的…

shell基本知识

Linux 系统中 shell 的基本知识 1 什么是 shell Shell 是一种命令行解释器&#xff0c;它为用户提供了一个向 Linux 内核发送请求以便运行程序的界面系统级程序。用户可以用 shell 来启动、挂起、停止甚至是编写一些程序。 2 Linux 启动过程 Linux 系统的启动过程可以概括为…

tomcat篇---第四篇

系列文章目录 文章目录 系列文章目录前言一、为什么我们将tomcat称为Web容器或者Servlet容器 ?二、tomcat是如何处理Http请求流程的?三、tomcat结构目录有哪些?前言 前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站,这…

【深度挖掘Java性能调优】「底层技术原理体系」深入挖掘和分析如何提升服务的性能以及执行效率(性能三大定律)

深入挖掘和分析如何提升服务的性能以及执行效率 前提介绍知识要点 性能概述教你看懂程序的性能案例介绍性能指标性能的参考指标性能瓶颈&#xff08;木桶原理&#xff09; 性能分析三大定律Amdahl定律计算公式参数解释案例分析定律总结 Gustafson定律与Amdahl定律相对立Gustafs…

有理函数的积分

1.多项式相除法&#xff1a; 2.分子分母次数带来的解题思路差异&#xff1a; 1.总体目的&#xff1a;降次 2.分子次数高于分母&#xff0c;采用多项式相除 3.分子次数等于分母&#xff0c;分离常数 4.最终形式&#xff1a;分子次数低分母次数高 3.不同形式的计算方法 4.按类拆…

51单片机数码管的使用

IO的使用2–数码管 本文主要涉及51单片机的数码管的使用 文章目录 IO的使用2--数码管一、数码管的定义与类型1.1 数码管的原理图二、 举个栗子2.1 一个数码管的底层函数2.2 调用上面的底层函数显示具体数字 一、数码管的定义与类型 数码管是一种用于数字显示的电子元件&#x…

[强网拟态决赛 2023] Crypto

文章目录 Bad_rsaClasslcal Bad_rsa 题目描述&#xff1a; from Crypto.Util.number import *f open(flag.txt,rb) m bytes_to_long(f.readline().strip())p getPrime(512) q getPrime(512) e getPrime(8) n p*q phi (p-1)*(q-1) d inverse(e,phi) leak d & ((1…

php操作数据库,用wampserver工具

php操作数据库&#xff0c;用wampserver工具 打开wampserver数据库可视化&#xff0c;创建表格&#xff0c;插入数据 DROP TABLE IF EXISTS user; CREATE TABLE IF NOT EXISTS user (user_Id int NOT NULL AUTO_INCREMENT COMMENT 用户编号,user_Name varchar(20) CHARACTER S…

Pandas中的Series(第1讲)

Pandas中的Series(第1讲)         🍹博主 侯小啾 感谢您的支持与信赖。☀️ 🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔…

深入学习锁--Synchronized各种使用方法

一、什么是synchronized 在Java当中synchronized通常是用来标记一个方法或者代码块。在Java当中被synchronized标记的代码或者方法在同一个时刻只能够有一个线程执行被synchronized修饰的方法或者代码块。因此被synchronized修饰的方法或者代码块不会出现数据竞争的情况&#x…

Hazel引擎学习(十二)

我自己维护引擎的github地址在这里&#xff0c;里面加了不少注释&#xff0c;有需要的可以看看 参考视频链接在这里 Scene类重构 参考&#xff1a;《InsideUE4》GamePlay架构&#xff08;二&#xff09;Level和World 目前我的Scene类基本只是给entt的封装&#xff0c;提供了…

工业4.0分类:数字化转型的多维度

引言 工业4.0代表着制造业的数字化革命&#xff0c;它将制造过程带入了数字时代。然而&#xff0c;工业4.0并不是一个单一的概念&#xff0c;而是一个多维度的范畴&#xff0c;包括不同的技术、应用领域、企业规模和实施方式。但在这一多维度的概念中&#xff0c;低代码技术正…