西工大网络空间安全学院计算机网络实验五——ACL配置

实验五、ACL配置

一. 实验目的

1. 掌握ACL的基本配置方法

二. 实验内容

1. 基于如下图所示的拓扑图,对路由器进行正确的RIP协议配置;

在这里插入图片描述

​ 首先引入3台2811 IOS15型号的路由器、3台2950-T24型号的交换机、4台PC-PT型号的PC机、两台Server-PT型号的服务器,如 图1:引入3台2811 IOS15型号的路由器、3台2950-T24型号的交换机、4台PC-PT型号的PC机、两台Server-PT型号的服务器 所示。接着考虑到2811 IOS15型号的路由器的网卡接口数量只有2个,而图中每个路由器都有3条连线,即图中每个路由器都需要3个网卡接口,所以需要依次关闭3台路由器的电源,为其添加网卡接口,接着依次开启3台路由器的电源,如 图2:为3台2811 IOS15型号的路由器添加网卡接口 所示。

在这里插入图片描述

( 图1:引入3台2811 IOS15型号的路由器、3台2950-T24型号的交换机、4台PC-PT型号的PC机、两台Server-PT型号的服务器 )

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

( 图2:为3台2811 IOS15型号的路由器添加网卡接口 )

​ 接着,开启使用直通线连接不同种设备,使用交叉线连接同种设备。在这里,使用直通线Copper Straight-Through将PC0的FastEthernet0网卡接口和Switch1的FastEthernet0/2网卡接口连接在一起,接着用直通线将PC1的FastEthernet0网卡接口和Switch1的FastEthernet0/3网卡接口连接在一起,接着将PC2的FastEthernet0网卡接口和Switch0的FastEthernet0/2网卡接口连接在一起,将PC3的FastEthernet0网卡接口和Switch0的FastEthernet0/3网卡接口连接在一起,将Server0的FastEthernet0网卡接口和Switch2的FastEthernet0/2网卡接口连接在一起,将Server1的FastEthernet0网卡接口和Switch2的FastEthernet0/3网卡接口连接在一起。上述过程使用的连线都为直通线Copper Straight-Through,因为我们连接的都是不同种设备。此时连接好的情况如 图3:将PC、Server与交换机相连 所示。

在这里插入图片描述

( 图3:将PC、Server与交换机相连 )

​ 接着,使用直通线将Switch0的FastEthernet0/1网卡接口与Router0的FastEthernet0/0网卡接口相连,将Switch1的FastEthernet0/1网卡接口与Router1的FastEthernet0/0网卡接口相连,将Switch2的FastEthernet0/1网卡接口与Router2的FastEthernet0/0网卡接口相连,如 图4:将交换机与路由器相连 所示。如果忘记了一根直通线所连的是哪两个网卡接口,可以删除掉这根线,再次想要连线时,多显示出来的网卡接口即为原来那根直通线所连的网卡接口。

在这里插入图片描述

( 图4:将交换机与路由器相连 )

​ 然后,开始使用交叉线连接同种设备。注意此时更要记住交叉线所连的两个设备的两个网卡接口的名称,以免后续配置网卡接口的IP时出现混淆 ,用交叉线将Router0的FastEthernet1/0网卡接口与Router1的FastEthernet1/0网卡接口相连,将Router0的FastEthernet1/1网卡接口和Router2的FastEthernet1/1网卡接口相连,将Router1的FastEthernet0/1网卡接口与Router2的FastEthernet0/1网卡接口相连,如 图5:使用交叉线将路由器与路由器相连 所示。

在这里插入图片描述

( 图5:使用交叉线将路由器与路由器相连 )

​ 接着开始配置各个设备的网卡接口的IP。先从服务器开始配置,配置DNS服务器Server0的网卡接口FastEthernet0的IPv4为192.168.1.57,默认网关为192.168.1.1(这也就是接下来Router2的FastEthernet0/0网卡接口的IP),DNS服务器设置为其本身,也就是192.168.1.57。如 图9:配置Server0的网卡接口FastEthernet0 所示。下一步我们要开启DNS服务并且先试探性的加入一条将域名"www.dnsserver.com"解析到IPv4为192.168.1.57的服务器的记录,并借此来检验DNS服务是否成功开启。但在此之前,我们先让Server0试探性ping一下"www.dnsserver.com",依次作为接下来的实验的对照。如 图10:配置Server0的网卡接口FastEthernet0之后立刻ping www.dnsserver.com 所示。发现此时ping不通使用域名"www.dnsserver.com"的服务器,那么如果接下来我们开启DNS服务并且添加一条相应的记录呢?如 图11:开启Server0的DNS服务并且加入一条相应的域名解析记录 所示。此时Server0再去ping域名"www.dnsserver.com",便得到了 图12:开启DNS服务并且加入一条相应的域名解析记录之后再去ping"www.dnsserver.com" 所示的结果,此时便能ping通域名为"www.dnsserver.com"的服务器,也就是Server0自己。

在这里插入图片描述

( 图9:配置Server0的网卡接口FastEthernet0 )

在这里插入图片描述

( 图10:配置Server0的网卡接口FastEthernet0之后立刻ping www.dnsserver.com )

在这里插入图片描述

在这里插入图片描述

( 图11:开启Server0的DNS服务并且加入一条相应的域名解析记录 )

在这里插入图片描述

( 图12:开启DNS服务并且加入一条相应的域名解析记录之后再去ping"www.dnsserver.com" )

接着配置使用HTTP协议的Web服务器Server1的网卡接口FastEthernet0的IPv4为192.168.1.58,默认网关为192.168.1.1,DNS服务器为192.168.1.57,如 图13:配置Server1的网卡接口FastEthernet0 所示。接着Server1先后去ping自己、ping Server0、ping 域名www.dnsserver.com,分别保证Server1的ping功能正常、交换机Switch2的功能正常、Server1的DNS server是谁设置正常以及Server0的DNS功能正常,如 图14:Server1去ping自己、ping Server0、ping www.dnsserver.com 所示。

在这里插入图片描述

( 图13:配置Server1的网卡接口FastEthernet0 )

在这里插入图片描述

在这里插入图片描述

( 图14:Server1去ping自己、ping Server0、ping www.dnsserver.com )

​ 现在配置Server1的HTTP功能,因为Server1的HTTP功能是默认开启的,所以我们不需要再额外开启Server1的HTTP功能。在"Services"下的"HTTP"中,我们看到了5个html文件,如 图15:5个html文件 所示。这5个html文件分别表示什么意思呢?先看index.html文件的内容,在"Desktop"中点开"Web Browser",接着输入"http://192.168.1.58"进入页面,所得到页面即由index.html所控制生成,如 图16:点开Web Browser并输入http://192.168.1.58 所示,正如index.html文件的内容所示,如 图17:查看index.html文件的内容 所示。在这里不需要焦虑看不明白html语言,慢慢来就可以。接着在Web Browser中分别输入"http://192.168.1.58/helloworld.html"、“http://192.168.1.58/copyrights.html”、“http://192.168.1.58/image.html”、“http://192.168.1.58/cscoptlogo177x111.jpg”,便可分别得到由helloworld.html等4个html文件所控制生成的页面,如 图18:查看剩余4个html文件控制生成的web页面 所示。

在这里插入图片描述

( 图15:5个html文件 )

在这里插入图片描述

在这里插入图片描述

( 图16:点开Web Browser并输入http://192.168.1.58 )

在这里插入图片描述

( 图17:查看index.html文件的内容 )

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

( 图18:查看剩余4个html文件控制生成的web页面 )

此时再去查看Server0能不能访问Server1的HTTP服务,如 图19:检查Server0能不能访问Server1的HTTP服务 所示发现是可以的。但是考虑到如果每次想访问Server1,都要输入Server1的IPv4地址,很不方便,那么该怎么办呢?这时Server0的DNS服务就发挥作用了。在Server0的"Services"中的"DNS"中添加一条域名解析记录,将域名www.httpserver.com解析到192.168.1.58,如 图20:在Server0的"Services"中的"DNS"中添加一条域名解析记录,将域名www.httpserver.com解析到192.168.1.58 所示。

在这里插入图片描述

( 图19:检查Server0能不能访问Server1的HTTP服务 )

在这里插入图片描述

在这里插入图片描述

( 图20:在Server0的"Services"中的"DNS"中添加一条域名解析记录,将域名www.httpserver.com解析到192.168.1.58 )

接着分别在Server0和Server1的Web Browser中输入"www.httpserver.com",检查Server0的DNS服务中添加的一条域名解析记录是否生效,如 图21:分别在Server0和Server1的Web Browser中输入"www.httpserver.com" 所示,发现Server0的DNS服务中添加的一条域名解析记录已经生效。

在这里插入图片描述

在这里插入图片描述

( 图21:分别在Server0和Server1的Web Browser中输入"www.httpserver.com" )

接着,给剩下的所有设备的被直通线或者交叉线连接的网卡接口配置IPv4、默认网关、DNS server,如 图22:给剩下的所有设备的被直通线或者交叉线连接的网卡接口配置IPv4、默认网关、DNS server 所示。

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

( 图22:给剩下的所有设备的被直通线或者交叉线连接的网卡接口配置IPv4、默认网关、DNS server )

​ 配置完各个需要被配置的网卡接口之后,开始配置RIP协议。配置RIP协议时,只需将各路由器的所有网卡接口的IPv4所属于的网段都加入到RIP表中即可。比如对于Router0而言,其三个网卡接口的IPv4所属于的网段分别是172.16.0.0/16、172.17.0.0/16、192.168.2.0/24,所以只需加入这三个网段即可。如 图23:将各路由器的所有网卡接口的IPv4所属于的网段都加入到RIP表中 所示。此时该网络拓扑图中的所有设备都可以实现相互之间的通信了,即使是对于PC0而言,其也可以通过向Web Browser中输入"http://www.httpserver.com"来访问Web服务器了,如 图24:PC0访问"http://www.httpserver.com" 所示。

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

( 图23:将各路由器的所有网卡接口的IPv4所属于的网段都加入到RIP表中 )

在这里插入图片描述

( 图24:PC0访问"http://www.httpserver.com" )

2. 在此基础上,正确地配置ACL,满足如下要求:
(1)限制所有主机远程登录到服务器;

​ 第一步,限制所有主机远程登录到服务器,这一步该怎么实现呢?因为思科模拟器中的所有Server服务器都是默认没有并且无法安装SSH服务的,所以即使我们成功配置了该条ACL,也无法检验配置的正确性,所以我们选择跳过此步。而现实环境中配置该步的ACL命令为"access-list 107 deny tcp any 192.168.1.0 0.0.0.255 eq 22"。

(2)禁止192.168.3.0/24网段中的主机去ping192.168.1.0/24网段;

​ 第二步,禁止192.168.3.0/24网段中的主机去ping192.168.1.0/24网段,因为ACL的配置要尽量靠近目的端,而目的端是192.168.1.0/24网段,所以被配置该步的路由器为Router2。我们先在特权模式下使用"show ip access-lists"命令显示已有的ACL,如 图25:在特权模式下使用"show ip access-lists"命令显示已有的ACL 所示。接着,我们先让192.168.3.0/24网段中的主机PC0去ping192.168.1.0/24网段的Server0,并将其作为对照,如 图26:让192.168.3.0/24网段中的主机PC0去ping192.168.1.0/24网段的Server0,并将其作为对照 所示。

在这里插入图片描述

( 图25:在特权模式下使用"show ip access-lists"命令显示已有的ACL )

在这里插入图片描述

( 图26:让192.168.3.0/24网段中的主机PC0去ping192.168.1.0/24网段的Server0,并将其作为对照 )

​ 接着开始配置Router2中的ACL。在这里先敲入"enable"命令进入特权模式,接着使用"show ip access-lists"命令查看之前遗留的的ACL,发现之前没有之前遗留的ACL(如果存在之前遗留的ACL的话,使用"configure terminal"命令进入全局模式之后,再使用"no access-list 那条遗留的ACL的编号"去删除那条ACL),如 图27:没有之前遗留的ACL 所示。接着使用"configure terminal"命令进入全局模式,然后再使用"access-list 107 deny icmp 192.168.3.0 0.0.0.255 192.168.1.0 0.0.0.255"命令添加一条ACL。其中"access-list"表示创建一条ACL记录;"107"表示创建的ACL记录的ACL编号是107;"deny"表示该条ACL会拒绝一些包;"icmp"表示该条ACL会拒绝的包的协议类型为ICMP,而ping命令使用的协议就是ICMP,所以"icmp"表示该条ACL会拒绝来自某些地址ping另外某些地址的ping请求;“192.168.3.0 0.0.0.255"表示该条ACL会拒绝来自192.168.3.0/24网段的地址的ping请求;“192.168.1.0 0.0.0.255"表示该条ACL会拒绝发往192.168.1.0/24网段的地址的ping请求。所以这条命令的意思即为,107号ACL会拒绝来自192.168.3.0/24网段的地址的ping请求报文,其中ping请求报文的目的地址是192.168.1.0/24网段中的地址。接着因为在默认情况下,每个ACL的末尾都隐含着拒绝来自所有地方、发往所有地方、的所有类型报文,所以在第107号ACL中需要有"access-list 107 permit ip any any”,表示允许来自所有地方、发往所有地方、的所有IP报文。这时第107号ACL已经编写完成,如 图28:编写完成第107号ACL 所示。退出全局模式,再使用"show ip access-lists"查看已编写好的第107号ACL,如 图29:查看已编写好的第107号ACL 所示。接着再该条ACL生效前的最后一步,即为将该条ACL规则应用到Router2的网卡接口FastEthernet0/0的out规则上。为什么要将该条ACL规则应用到Router2的网卡接口FastEthernet0/0的出规则out上,而不是Router2的网卡接口FastEthernet1/0和FastEthernet1/1的入规则in上呢?因为这是为了简便考虑的,能配置尽量少的ACL,就配置尽量少的ACL。接着为什么要将该条ACL规则应用到Router2的网卡接口FastEthernet0/0的出规则out上,而不是入规则in上呢?因为如果是入规则in的话,发向网卡接口FastEthernet0/0的包的源地址都是192.168.1.0/24网段,怎么可能会有192.168.3.0/24网段的源地址呐?这时入规则相当于没有用了,所以将该条ACL规则应用到Router2的网卡接口FastEthernet0/0的出规则out上。进入全局模式,接着使用命令"int fa0/0"进入端口fa0/0,然后使用命令"ip access-group 107 out”,将第107号ACL规则作为端口fa0/0的出规则out。如 图30:将第107号ACL规则作为端口fa0/0的出规则out 所示。

在这里插入图片描述

( 图27:没有之前遗留的ACL )

在这里插入图片描述

( 图28:编写完成第107号ACL )

在这里插入图片描述

( 图29:查看已编写好的第107号ACL )

在这里插入图片描述

( 图30:将第107号ACL规则作为端口fa0/0的出规则out )

此时,如果PC0无法ping通Server1,但是仍能够访问Server1提供的HTTP服务,与Server0提供的DNS服务,就说明为Router2配置的ACL规则成功,我们来检验一下,如 图31:检验为Router2配置的ACL规则是否成功 所示。

在这里插入图片描述

在这里插入图片描述

( 图31:检验为Router2配置的ACL规则是否成功 )

图31:检验为Router2配置的ACL规则是否成功 所示,虽然PC0既ping不通Server0,又ping不通Server1,但是PC0能够通过访问"http://www.httpserver.com"来访问Server1提供的HTTP服务,同时将域名"http://www.httpserver.com"解析为IPv4地址"192.168.1.58"这个任务是由Server0提供的DNS解析服务完成的,所以PC0也能能使用Server0提供的DNS解析服务,所以综上所述,为Router2配置的ACL规则是成功的!

(3)禁止192.168.2.11主机使用HTTP协议访问Web服务器;
(4)禁止192.168.2.12主机访问DNS服务器

​ 为什么将这两步合并为一步呢?因为这两步都是对Router2的网卡接口FastEthernet0/0所应用的ACL做修改,而因为无法比较方便的修改一条已有的ACL,所以我们选择删除步骤(2)中已有的第107号ACL,重新创建一个ACL,并且让该ACL能够同时满足(2)、(3)、(4)的要求,如 图32:重新为Router2的网卡接口FastEthernet0/0编写ACL规则,使其同时满足(2)、(3)、(4) 所示。

在这里插入图片描述

( 图32:重新为Router2的网卡接口FastEthernet0/0编写ACL规则,使其同时满足(2)、(3)、(4) )

​ 接着验证第(2)步,192.168.3.0/24网段无法ping通192.168.1.0/24网段,如 图33:最终检验第(2)步 所示。接着检验第(3)步,禁止192.168.2.11主机使用HTTP协议访问Web服务器,但是192.168.2.11能够ping通Web服务器,也能够使用Server0提供的DNS服务,如 图34:最终检验第(3)步 所示。最后检验第(4)步,禁止192.168.2.12主机访问DNS服务器,但是192.168.2.12仍能够ping通Server0和Server1,并且虽不能通过域名访问Server1的Web服务,但能够通过IP地址访问Server1的Web服务,如 图35:最终检验第(4)步 所示。

在这里插入图片描述

在这里插入图片描述

( 图33:最终检验第(2)步 )

在这里插入图片描述

在这里插入图片描述

( 图34:最终检验第(3)步 )

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

( 图35:最终检验第(4)步 )

​ 至此,实验完成!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/210642.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

kafka学习笔记--生产者消息发送及原理

本文内容来自尚硅谷B站公开教学视频,仅做个人总结、学习、复习使用,任何对此文章的引用,应当说明源出处为尚硅谷,不得用于商业用途。 如有侵权、联系速删 视频教程链接:【尚硅谷】Kafka3.x教程(从入门到调优…

Ubuntu与Windows通讯传输文件(FTP服务器版)(没用的方法,无法施行)

本文介绍再Windows主机上建立FTP服务器,并且在Ubuntu虚拟机上面访问Windows上FTP服务器的方法 只要按照上图配置就可以了 第二部:打开IIS管理控制台 右击网站,新建FTP站点。需要注意的一点是在填写IP地址的时候,只需要填写Window…

用友T3如何反结账、反记账、反审核及删除凭证

在T3总账中已经进行了总账记账和月末结账,但是需要去修改凭证或删除凭证,这个时候就需要去进行反结账、反记账等操作,以下是具体的操作流程 第一步、反结账 1、进入用友T3件,打开总账系统模块,点月末结账&#xff0c…

uc_15_TCP协议

1 TCP协议 TCP提供客户机与服务器的链接。一个完整TCP通信过程需要经历三个阶段 1)首先,客户机必须建立与服务器的连接,所谓虚电路 2)然后,凭借已建立好的连接,通信双方相互交换数据 3)最后&am…

智能优化算法应用:基于粒子群算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于粒子群算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用:基于粒子群算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.粒子群算法4.实验参数设定5.算法结果6.参考文…

Python---异常的综合案例

☆ 异常的传递 需求: ① 尝试只读方式打开python.txt文件,如果文件存在则读取文件内容,文件不存在则提示用户即可。 ② 读取内容要求:尝试循环读取内容,读取过程中如果检测到用户意外终止程序,则except捕…

个人博客网站如何实现https重定向(301)到http

对于个人网站站注册比较少的,服务器配置不是很好的,没必要https,https跳转到http是要时间的,会影响网站打开的速度。免费的https每年都要更换。个人博客网站https有一段时间了,而且很多页面都有收录排名,现在已去掉htt…

基于JavaWeb+SSM+Vue实习记录微信小程序系统的设计和实现

基于JavaWebSSMVue实习记录微信小程序系统的设计和实现 源码获取入口Lun文目录前言主要技术系统设计功能截图订阅经典源码专栏Java项目精品实战案例《500套》 源码获取 源码获取入口 Lun文目录 目 录 摘 要 III Abstract 1 1 系统概述 1 1.1 概述 2 1.2课题意义 3 1.3 主要内…

详细了解STM32----GPIO

提示:永远支持免费开源知识文档,喜欢的点个关注吧!谢谢! 文章目录 一、什么是GPIO?二、GPIO基本结构三、GPIO的输入输出模式1、推挽输出2、开漏输出3、复用推挽4、复用开漏1、浮空输入2、上拉输入3、下拉输…

FastAPI之嵌套模型

请求体 - 嵌套模型 使用 FastAPI,你可以很随意的实现模型的嵌套、定义、校验、记录文档,并使用任意深度嵌套的模型,这其实都是FastAPI的核心模块P一单提成进行做的。。 List 字段 from fastapi import FastAPI from pydantic import BaseM…

基于JavaWeb+SSM+Vue童装商城小程序系统的设计和实现

基于JavaWebSSMVue童装商城小程序系统的设计和实现 源码获取入口Lun文目录前言主要技术系统设计功能截图订阅经典源码专栏Java项目精品实战案例《500套》 源码获取 源码获取入口 Lun文目录 目 录 摘 要 III Abstract 1 1 系统概述 2 1.1 概述 3 1.2课题意义 4 1.3 主要内容 5…

BearPi Std 板从入门到放弃 - 先天篇(1)(阶段 : 智慧城市 - 智慧路灯)

简介 对前面几篇整合, 做个小小汇总试验, 使用BearPi E53_SC1扩展板主芯片: STM32L431RCT6串口: Usart1扩展板与主板连接: I2C : I2C1 (光照强度传感器:BH1750)LED: PB9步骤 创建项目 参考 BearPi Std 板从入门到放弃 - 引气入体篇(1)(由零创…

浅谈Google Play ASO 优化

什么是ASO ASO即APP Store Optimization,是用于提高APP在应用市场排名的工具,其实也就是移动产品的SEO工作。 ASO是为了提高该产品的搜索结果成绩,提升APP的下载量,针对Google Play来说,ASO就是优化APP页面。 为什么…

Linux升级nginx版本

处于漏洞修复目的服务器所用nginx是1.16.0版本扫出来存在安全隐患,需要我们升级到1.17.7以上。 一般nginx默认在 /usr/local/ 目录,这里我的nginx是自定义的路径安装在 /app/weblogic/nginx 。 1.查看生产环境nginx版本 cd /app/weblogic/nginx/sbin/…

Redis基础入门

第1章:引言 大家好!我是小黑,今天咱们来聊聊Redis。Redis,这个名字你可能在不少地方听过,尤其是在后端开发领域,它可是个大名鼎鼎的角色。,Redis是一个开源的内存中数据结构存储系统&#xff0…

放弃原生SQL:Python中更优雅的数据库操作

概要 在Python中,通过原生SQL语句进行数据库操作是一种传统的方式,但现代的Python开发中,使用ORM(Object-Relational Mapping)工具和数据库连接库可以更加高效和优雅地进行增删改查操作。本文将详细介绍Python中放弃原…

解决IDEA中多个项目不在同一窗口下显示的问题和添加新的git的URL

以上是添加显示多个项目 以下是给新添加的项目添加git

LeetCode算法题解(单调栈)|LeetCode84. 柱状图中最大的矩形

一、LeetCode84. 柱状图中最大的矩形 题目链接:84. 柱状图中最大的矩形 题目描述: 给定 n 个非负整数,用来表示柱状图中各个柱子的高度。每个柱子彼此相邻,且宽度为 1 。 求在该柱状图中,能够勾勒出来的矩形的最大…

做外贸很多时候还是要学会随机应变

马上又要到年底了,相信已经有一部分小伙伴开启了催单模式,希望客户尽量在春节前将订单落实下来,自然也有很多客户会在春节前的这一段时间开始陆续拜访自己观望了很久的工厂。 其实对于贸易公司来说,对于来看工厂的客户&#xff0…

ChatGPT,作为一种强大的自然语言处理模型,具备显著优势,能够帮助您在各个领域取得突破

2023年随着OpenAI开发者大会的召开,最重磅更新当属GPTs,多模态API,未来自定义专属的GPT。微软创始人比尔盖茨称ChatGPT的出现有着重大历史意义,不亚于互联网和个人电脑的问世。360创始人周鸿祎认为未来各行各业如果不能搭上这班车…