目前金属矿开采,爆破还是主要的破岩方式,为了保证巷道采场的安全,需要对爆破震动进行监测,获取的监测数据如附件,第1列数据为震动的序号,第2、3、4列为x,y,z三个方向的震动速度,往往由于各种因素如环境、采集设备故障等导致采集的数据存在缺失、异常、冗余等现象,这会降低系统分析和预测能力,因此,如何将获取“脏数据”进行科学合理的清洗是亟待解决的问题。一般说来,脏数据主要存在异常、缺失和冗余这三类,如某一行的数据不是4列,或者x,y,z缺失或者格式为字符不是数字等。对数据进行清洗后,请计算出爆破振动的合速度,建立新的文件,保存在第5列,在文件开头保存程序运行时的系统时间和程序开发者姓名,并绘制出合速度的波形图,绘制波形使用turtle库或matplotlib库。
X(S),X(cm/s),Y(cm/s),Z(cm/s)
-2023.2048,-0.040775947,-0.026564745,-0.01956255
-0.2046,-0.040775947,-0.026564745,-0.01956255
-0.2044,-0.043995101,-0.025502155,-0.023680981
-0.2042,-0.045068152,-0.027627335,-0.023680981
-0.204,-0.046141203,-0.032940284,-0.020592158
-0.204,-0.046141203,-0.032940284,-0.020592158,ttytt
110.204,-0.046141203,-0.032940284,-0.020592158
-0.204,,-0.032940284,-0.020592158
-0.204,dog,-0.032940284,-0.020592158
-0.2038,-0.048287306,-0.035065463,-0.024710589
-0.2036,-0.045068152,-0.031877694,-0.023680981
-0.2034,-0.046141203,-0.024439565,-0.018532942
-0.2032,-0.035410691,-0.023376976,-0.022651373
-0.203,-0.035410691,-0.022314386,-0.01956255
-0.2028,-0.035410691,-0.021251796,-0.020592158
-0.2026,-0.032191537,-0.021251796,-0.01956255
-0.2024,-0.033264589,-0.018064027,-0.021621766·
·
·
实现代码如下:
import csv
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import datetimewith open("test.txt", 'w') as f:f.write('ID:20220000,Name:XXX,time:%s\n' % datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S'))out = open('data.csv', 'w+', newline='', encoding='utf-8')
csv_writer = csv.writer(out, dialect='excel')f = open("data.txt", "r")
flag = 0
for line in f.readlines():lst = list(line.strip('\n').split(',')) # 将字符串转为列表,从而可以按单元格写入csvfor item in lst:if item == 'X(S)' or item == 'X(cm/s)' or item == 'Y(cm/s)' or item == 'Z(cm/s)':flag = 4breakelif item.islower():flag = 0breakelif item.find('.') < 3 and item.find('.') > 0:flag = flag + 1continueif flag == 4:csv_writer.writerow(lst)flag = 0# 读取数据文件
reader = pd.read_csv('data.csv', header=[0])
X = reader.iloc[:, 1]
Y = reader.iloc[:, 2]
Z = reader.iloc[:, 3]
T = reader.iloc[:, 0]
# 计算合速度
V = np.sqrt(X ** 2 + Y ** 2 + Z ** 2) * (X / abs(X))
# 将V存入第五列
reader['V'] = V
reader.to_csv('data.csv', index=False)
# 生成结果表单
out = open('result.csv', 'w+', newline='', encoding='utf-8')
csv_writer2 = csv.writer(out, dialect='excel')
f1 = open("test.txt")
for line in f1.readlines():lst = list(line.strip('\n').split(','))csv_writer2.writerow(lst)
f2 = open("data.csv")
for line in f2.readlines():lst = list(line.strip('\n').split(','))csv_writer2.writerow(lst)
# 绘制波形图
plt.figure(num=1, figsize=(8, 4))
plt.plot(T, V, color='green')
plt.xlabel('time')
plt.ylabel('velocity')
plt.title('Blasting vibration composite velocity waveform graph')
plt.grid()
plt.show()
效果:
生成的数据文件会自动和代码文件储存在一起。
本代码在pycharm中编写,在其他编译器中如有问题,概不负责。