【人工智能Ⅰ】实验7:K-means聚类实验

实验7 K-means聚类实验

一、实验目的

学习K-means算法基本原理,实现Iris数据聚类。

二、实验内容

应用K-means算法对iris数据集进行聚类。

三、实验结果及分析

0:输出数据集的基本信息

参考代码在main函数中首先打印了数据、特征名字、目标值、目标值的名字,iris数据集的结果如下图所示。

【数据】

    数据共有150组,每组包含4个特征。

【特征名字】

    每组数据包含的特征为:花萼长度、花萼宽度、花瓣长度、花瓣宽度。其中sepal对应花萼,而petal对应花瓣。

【目标值】

    数据集里面共包含3种鸢尾,标签分别是0、1、2。由此可知,我们后面需要通过K-means算法聚成3类以进行分类。

【目标值的名字】

数据集里面标签分别为0、1、2的各组数据,类别分别对应setosa、versicolor、virginica。

同时,参考代码中利用show_data函数,分别画出了花萼长度和宽度的关系和花瓣长度和宽度的关系,结果如下图所示。

【Sepal花萼】

【Petal花瓣】

1:调用Kmeans进行聚类

在任务1中,需要分别对Sepal和Petal进行聚类。此处使用【sklearn】库中的KMeans封装包进行调用,选定初始的聚类数目为3,采用fit方法进行模型训练,最后得到训练标签为【kmeans_sepal.labels_】和【kmeans_petal.labels_】。整体代码如下图所示。

同时,采用head方法输出前几个数据的聚类情况,程序输出结果如下图所示。

2:绘出聚类前后的图

在任务2中, 我们定义了图的大小,并定义了4个子图,分别用于显示花萼聚类前、花萼聚类后、花瓣聚类前、花瓣聚类后的聚类散点图。整体代码如下图所示。

程序输出结果如下图所示。其中,Original Sepal Data对应原始花萼数据,Sepal Clustering Overlay对应聚类后的花萼数据,Original Petal Data对应原始花瓣数据,Petal Clustering Overlay对应聚类后的花瓣数据。

3:计算并输出准确率

在任务3中,利用【from sklearn.metrics import accuracy_score】从评价指标中调用准确率,输入数据集本身的标签和kmeans算法聚类得到的标签,进行对比后输出准确率结果。整体代码如下图所示。

程序输出结果如下图所示。可以看到计算出来的花萼聚类的准确率为25.33%、花瓣聚类的准确率为1.33%。

通过任务2中的对比图可知,原来的标签与聚类结果的标签所对应的关系如下表所示。其中,表格中的橘色位置处均是结果标签与原始标签存在不一致的情况。因此,该准确率存在不准确的情况,只有当原始标签等于结果标签时,才能得到正确的Accuracy。同时,应该采用适合非监督学习的评价指标进行结果优劣的判断。

聚类对象

原始标签

结果标签

花萼

绿

绿

花瓣

绿

绿

4:计算并输出轮廓系数(自增)

在任务4中,利用【from sklearn.metrics import silhouette_score】从评价指标中调用轮廓系数,输入数据集本身的特征值和kmeans算法聚类得到的标签,进行对比后输出轮廓系数结果。整体代码如下图所示。

程序输出结果如下图所示。可以看到计算出来的花萼聚类的轮廓系数为0.45左右、花瓣聚类的轮廓系数为0.66左右。

5:计算并输出Adjusted Rand Index(自增)

在任务5中,利用【from sklearn.metrics import adjusted_rand_score】从评价指标中调用ARI,输入数据集本身的标签和kmeans算法聚类得到的标签,进行对比后输出ARI结果。整体代码如下图所示。

 程序输出结果如下图所示。可以看到计算出来的花萼聚类的ARI为0.60左右、花瓣聚类的ARI为0.89左右。

四、遇到的问题和解决方案

问题1:每次执行时,K-means聚类算法计算出来的Accuracy均不同。

解决1:经过对比打印出的数据标签和聚类标签可知,K-means聚类算法在每次执行后给每一类分配的标签不同,只具备一定的映射关系(例如dataset中的0标签与kmeans-label中的1标签相映射,而不是与kmeans-label中的0标签对应)。但是不能保证每次代码运行后的映射关系相同,因此需要采用ARI评价指标来评估聚类的好坏

五、实验总结和心得

1:KMeans包中可修改以下参数:n_clusters(指定要分成的簇的数量)、init(用于初始化簇中心的方法,可以选择随机初始值random,或从数据中选择初始值k-means++)、n_init(执行K均值算法的次数)、max_iter(每次迭代的最大次数)、tol(收敛的阈值)、random_state(用于确定随机种子的整数,以确保结果的可重复性)、algorithm(用于计算距离的算法,可以选择full、elkan、auto等)、precompute_distances(指定是否预先计算距离,可以加速算法的收敛)。一般来说,最重要的是确定簇的数量 n_clusters,因为它会直接影响到聚类的结果。

2:ARI用于评估聚类结果与真实标签之间的一致性,其取值范围在[-1, 1]之间,越接近1表示聚类效果越好。

3:轮廓系数用于衡量数据点与其所属簇内部的相似度和与其他簇之间的差异度,其取值范围在[-1, 1]之间。轮廓系数接近1表示数据点与其所属簇内的其他数据点非常相似,同时与其他簇的数据点差异很大,通常表示数据点被正确地分配到了合适的簇中。轮廓系数接近0表示数据点与其所属簇内部的数据点相似度与其他簇的数据点相似度差不多,通常表示数据点可能位于两个或多个簇的边界上。轮廓系数接近-1表示数据点与其所属簇内的其他数据点差异很大,但与其他簇的数据点相似度高,通常表示数据点被错误地分配到了不合适的簇中。轮廓系数可以用于选择最佳的K值,比较不同聚类算法的性能,或者评估聚类结果的质量。

4:K均值聚类的主要思想是通过迭代寻找簇中心,将数据点分配到距离最近的簇中心。在应用聚类算法之前,可以进行实验并评估聚类性能。通过可视化和指标评估,可以更好地理解数据的结构和选择合适的K值。

六、附录

(1)完整程序源代码(含注释)

各部分的任务操作在多行代码注释下构造。各段代码含有概念注释模块。

import matplotlib.pyplot as plt

from sklearn import datasets

from sklearn.cluster import KMeans

import sklearn.metrics as sm

import pandas as pd

import numpy as np

from sklearn.metrics import accuracy_score

from sklearn.metrics import adjusted_rand_score

from sklearn.metrics import silhouette_score

def print_data(want_print, print_iris):

    """

    展示iris的数据

    :return: None

    """

    print("iris{0}:\n{1}".format(want_print, print_iris))

    print("=" * 85)

 

def show_data(length, width, title):

    """

    画图

    :param length: 长度

    :param width: 宽度

    :param title: 标题

    :return: None

    """

    # 建立一个画布

    plt.figure(figsize=(14, 7))

    plt.scatter(length, width, c=colormap[y.Targets], s=40)

    plt.title(title)

    plt.show()

if __name__ == '__main__':

    # 导入iris数据

    iris = datasets.load_iris()

    # 展示iris真实数据

    print_data(want_print="数据", print_iris=iris.data)

    # 展示iris特征名字

    print_data(want_print="特征名字", print_iris=iris.feature_names)

    # 展示目标值

    print_data(want_print="目标值", print_iris=iris.target)

    # 展示目标值的名字

    print_data(want_print="目标值的名字", print_iris=iris.target_names)

    # 为了便于使用,将iris数据转换为pandas库数据结构,并设立列的名字

    # iris数据转为pandas数据结构

    x = pd.DataFrame(iris.data)

    # iris数据的名字设为‘Sepal_Length’‘Sepal_Width’‘Sepal_Width’‘Petal_Width’

    x.columns = ['Sepal_Length', 'Sepal_Width', 'Petal_Length', 'Petal_Width']

    # iris目标值也转为pandas数据结构

    y = pd.DataFrame(iris.target)

    # iris目标值得名字设为‘Targets’

    y.columns = ['Targets']

    # 创建色板图

    colormap = np.array(['red', 'lime', 'black'])

    # 开始画Sepal长度和宽度的关系

    show_data(length=x.Sepal_Length, width=x.Sepal_Width, title='Sepal')

    # 开始画Petal长度和宽度的关系

    show_data(length=x.Petal_Length, width=x.Petal_Width, title='Petal')

   

    ###########################################################################################

    # 调用Kmeans进行聚类

   

    # for sepal

    kmeans_sepal = KMeans(n_clusters=3)

    kmeans_sepal.fit(x[['Sepal_Length', 'Sepal_Width']])

    x['Sepal_Cluster'] = kmeans_sepal.labels_

    # for petal

    kmeans_petal = KMeans(n_clusters=3)

    kmeans_petal.fit(x[['Petal_Length', 'Petal_Width']])

    x['Petal_Cluster'] = kmeans_petal.labels_

    # 打印前几行数据(including聚类结果)

    print(x.head())

    # print(y.Targets)

   

    ###########################################################################################

    # 计算轮廓系数

   

    # 计算花萼聚类的轮廓系数

    silhouette_sepal = silhouette_score(x[['Sepal_Length', 'Sepal_Width']], x['Sepal_Cluster'])

    print("Silhouette Score for Sepal Clustering:", silhouette_sepal)

    # 计算花瓣聚类的轮廓系数

    silhouette_petal = silhouette_score(x[['Petal_Length', 'Petal_Width']], x['Petal_Cluster'])

    print("Silhouette Score for Petal Clustering:", silhouette_petal)

   

    ###########################################################################################

    # 绘出聚类前后的图

   

    # 绘制花萼的聚类前后对比图

    plt.figure(figsize=(16, 7))

    # 绘制花萼的原始数据散点图

    plt.subplot(2, 2, 1)

    plt.scatter(x['Sepal_Length'], x['Sepal_Width'], c=colormap[y['Targets']], s=40, label='Original Data')

    plt.title('Original Sepal Data')

    # 绘制花萼的聚类结果散点图

    plt.subplot(2, 2, 2)

    for cluster in np.unique(x['Sepal_Cluster']):

        cluster_data = x[x['Sepal_Cluster'] == cluster]

        plt.scatter(cluster_data['Sepal_Length'], cluster_data['Sepal_Width'], c=colormap[cluster], s=40, label=f'Cluster {cluster}')

    plt.title('Sepal Clustering Overlay')

    plt.legend()

    # 绘制花瓣的聚类前后对比图

    # 绘制花瓣的原始数据散点图

    plt.subplot(2, 2, 3)

    plt.scatter(x['Petal_Length'], x['Petal_Width'], c=colormap[y['Targets']], s=40, label='Original Data')

    plt.title('Original Petal Data')

    # 绘制花瓣的聚类结果散点图

    plt.subplot(2, 2, 4)

    for cluster in np.unique(x['Petal_Cluster']):

        cluster_data = x[x['Petal_Cluster'] == cluster]

        plt.scatter(cluster_data['Petal_Length'], cluster_data['Petal_Width'], c=colormap[cluster], s=40, label=f'Cluster {cluster}')

    plt.title('Petal Clustering Overlay')

    plt.legend()

    plt.tight_layout()

    plt.show()

   

    ###########################################################################################

    # 计算并输出Accuracy

   

    # acc for sepal

    accuracy_sepal = accuracy_score(iris.target, kmeans_sepal.labels_)

    print("Accuracy for Sepal Clustering: {:.2f}%".format(accuracy_sepal * 100))

   

    # acc for petal

    accuracy_petal = accuracy_score(iris.target, kmeans_petal.labels_)

    print("Accuracy for Petal Clustering: {:.2f}%".format(accuracy_petal * 100))

   

    ###########################################################################################

    # 计算并输出ARI(adjusted_rand_score)

    """

        ARIAdjusted Rand Index):

        用于评估聚类结果与真实标签之间的一致性。取值范围在[-1, 1]之间,越接近1表示聚类效果越好。

    """

   

    # ARI for sepal

    ari_score_sepal = adjusted_rand_score(iris.target, x['Sepal_Cluster'])

    print("ARI for Sepal Clustering:", ari_score_sepal)

   

    # ARI for petal

    ari_score_petal = adjusted_rand_score(iris.target, x['Petal_Cluster'])

    print("ARI for Petal Clustering:", ari_score_petal)

(2)数据集文本文件

"Sepal.Length" "Sepal.Width" "Petal.Length" "Petal.Width" "Species"

"1" 5.1 3.5 1.4 0.2 "setosa"

"2" 4.9 3 1.4 0.2 "setosa"

"3" 4.7 3.2 1.3 0.2 "setosa"

"4" 4.6 3.1 1.5 0.2 "setosa"

"5" 5 3.6 1.4 0.2 "setosa"

"6" 5.4 3.9 1.7 0.4 "setosa"

"7" 4.6 3.4 1.4 0.3 "setosa"

"8" 5 3.4 1.5 0.2 "setosa"

"9" 4.4 2.9 1.4 0.2 "setosa"

"10" 4.9 3.1 1.5 0.1 "setosa"

"11" 5.4 3.7 1.5 0.2 "setosa"

"12" 4.8 3.4 1.6 0.2 "setosa"

"13" 4.8 3 1.4 0.1 "setosa"

"14" 4.3 3 1.1 0.1 "setosa"

"15" 5.8 4 1.2 0.2 "setosa"

"16" 5.7 4.4 1.5 0.4 "setosa"

"17" 5.4 3.9 1.3 0.4 "setosa"

"18" 5.1 3.5 1.4 0.3 "setosa"

"19" 5.7 3.8 1.7 0.3 "setosa"

"20" 5.1 3.8 1.5 0.3 "setosa"

"21" 5.4 3.4 1.7 0.2 "setosa"

"22" 5.1 3.7 1.5 0.4 "setosa"

"23" 4.6 3.6 1 0.2 "setosa"

"24" 5.1 3.3 1.7 0.5 "setosa"

"25" 4.8 3.4 1.9 0.2 "setosa"

"26" 5 3 1.6 0.2 "setosa"

"27" 5 3.4 1.6 0.4 "setosa"

"28" 5.2 3.5 1.5 0.2 "setosa"

"29" 5.2 3.4 1.4 0.2 "setosa"

"30" 4.7 3.2 1.6 0.2 "setosa"

"31" 4.8 3.1 1.6 0.2 "setosa"

"32" 5.4 3.4 1.5 0.4 "setosa"

"33" 5.2 4.1 1.5 0.1 "setosa"

"34" 5.5 4.2 1.4 0.2 "setosa"

"35" 4.9 3.1 1.5 0.2 "setosa"

"36" 5 3.2 1.2 0.2 "setosa"

"37" 5.5 3.5 1.3 0.2 "setosa"

"38" 4.9 3.6 1.4 0.1 "setosa"

"39" 4.4 3 1.3 0.2 "setosa"

"40" 5.1 3.4 1.5 0.2 "setosa"

"41" 5 3.5 1.3 0.3 "setosa"

"42" 4.5 2.3 1.3 0.3 "setosa"

"43" 4.4 3.2 1.3 0.2 "setosa"

"44" 5 3.5 1.6 0.6 "setosa"

"45" 5.1 3.8 1.9 0.4 "setosa"

"46" 4.8 3 1.4 0.3 "setosa"

"47" 5.1 3.8 1.6 0.2 "setosa"

"48" 4.6 3.2 1.4 0.2 "setosa"

"49" 5.3 3.7 1.5 0.2 "setosa"

"50" 5 3.3 1.4 0.2 "setosa"

"51" 7 3.2 4.7 1.4 "versicolor"

"52" 6.4 3.2 4.5 1.5 "versicolor"

"53" 6.9 3.1 4.9 1.5 "versicolor"

"54" 5.5 2.3 4 1.3 "versicolor"

"55" 6.5 2.8 4.6 1.5 "versicolor"

"56" 5.7 2.8 4.5 1.3 "versicolor"

"57" 6.3 3.3 4.7 1.6 "versicolor"

"58" 4.9 2.4 3.3 1 "versicolor"

"59" 6.6 2.9 4.6 1.3 "versicolor"

"60" 5.2 2.7 3.9 1.4 "versicolor"

"61" 5 2 3.5 1 "versicolor"

"62" 5.9 3 4.2 1.5 "versicolor"

"63" 6 2.2 4 1 "versicolor"

"64" 6.1 2.9 4.7 1.4 "versicolor"

"65" 5.6 2.9 3.6 1.3 "versicolor"

"66" 6.7 3.1 4.4 1.4 "versicolor"

"67" 5.6 3 4.5 1.5 "versicolor"

"68" 5.8 2.7 4.1 1 "versicolor"

"69" 6.2 2.2 4.5 1.5 "versicolor"

"70" 5.6 2.5 3.9 1.1 "versicolor"

"71" 5.9 3.2 4.8 1.8 "versicolor"

"72" 6.1 2.8 4 1.3 "versicolor"

"73" 6.3 2.5 4.9 1.5 "versicolor"

"74" 6.1 2.8 4.7 1.2 "versicolor"

"75" 6.4 2.9 4.3 1.3 "versicolor"

"76" 6.6 3 4.4 1.4 "versicolor"

"77" 6.8 2.8 4.8 1.4 "versicolor"

"78" 6.7 3 5 1.7 "versicolor"

"79" 6 2.9 4.5 1.5 "versicolor"

"80" 5.7 2.6 3.5 1 "versicolor"

"81" 5.5 2.4 3.8 1.1 "versicolor"

"82" 5.5 2.4 3.7 1 "versicolor"

"83" 5.8 2.7 3.9 1.2 "versicolor"

"84" 6 2.7 5.1 1.6 "versicolor"

"85" 5.4 3 4.5 1.5 "versicolor"

"86" 6 3.4 4.5 1.6 "versicolor"

"87" 6.7 3.1 4.7 1.5 "versicolor"

"88" 6.3 2.3 4.4 1.3 "versicolor"

"89" 5.6 3 4.1 1.3 "versicolor"

"90" 5.5 2.5 4 1.3 "versicolor"

"91" 5.5 2.6 4.4 1.2 "versicolor"

"92" 6.1 3 4.6 1.4 "versicolor"

"93" 5.8 2.6 4 1.2 "versicolor"

"94" 5 2.3 3.3 1 "versicolor"

"95" 5.6 2.7 4.2 1.3 "versicolor"

"96" 5.7 3 4.2 1.2 "versicolor"

"97" 5.7 2.9 4.2 1.3 "versicolor"

"98" 6.2 2.9 4.3 1.3 "versicolor"

"99" 5.1 2.5 3 1.1 "versicolor"

"100" 5.7 2.8 4.1 1.3 "versicolor"

"101" 6.3 3.3 6 2.5 "virginica"

"102" 5.8 2.7 5.1 1.9 "virginica"

"103" 7.1 3 5.9 2.1 "virginica"

"104" 6.3 2.9 5.6 1.8 "virginica"

"105" 6.5 3 5.8 2.2 "virginica"

"106" 7.6 3 6.6 2.1 "virginica"

"107" 4.9 2.5 4.5 1.7 "virginica"

"108" 7.3 2.9 6.3 1.8 "virginica"

"109" 6.7 2.5 5.8 1.8 "virginica"

"110" 7.2 3.6 6.1 2.5 "virginica"

"111" 6.5 3.2 5.1 2 "virginica"

"112" 6.4 2.7 5.3 1.9 "virginica"

"113" 6.8 3 5.5 2.1 "virginica"

"114" 5.7 2.5 5 2 "virginica"

"115" 5.8 2.8 5.1 2.4 "virginica"

"116" 6.4 3.2 5.3 2.3 "virginica"

"117" 6.5 3 5.5 1.8 "virginica"

"118" 7.7 3.8 6.7 2.2 "virginica"

"119" 7.7 2.6 6.9 2.3 "virginica"

"120" 6 2.2 5 1.5 "virginica"

"121" 6.9 3.2 5.7 2.3 "virginica"

"122" 5.6 2.8 4.9 2 "virginica"

"123" 7.7 2.8 6.7 2 "virginica"

"124" 6.3 2.7 4.9 1.8 "virginica"

"125" 6.7 3.3 5.7 2.1 "virginica"

"126" 7.2 3.2 6 1.8 "virginica"

"127" 6.2 2.8 4.8 1.8 "virginica"

"128" 6.1 3 4.9 1.8 "virginica"

"129" 6.4 2.8 5.6 2.1 "virginica"

"130" 7.2 3 5.8 1.6 "virginica"

"131" 7.4 2.8 6.1 1.9 "virginica"

"132" 7.9 3.8 6.4 2 "virginica"

"133" 6.4 2.8 5.6 2.2 "virginica"

"134" 6.3 2.8 5.1 1.5 "virginica"

"135" 6.1 2.6 5.6 1.4 "virginica"

"136" 7.7 3 6.1 2.3 "virginica"

"137" 6.3 3.4 5.6 2.4 "virginica"

"138" 6.4 3.1 5.5 1.8 "virginica"

"139" 6 3 4.8 1.8 "virginica"

"140" 6.9 3.1 5.4 2.1 "virginica"

"141" 6.7 3.1 5.6 2.4 "virginica"

"142" 6.9 3.1 5.1 2.3 "virginica"

"143" 5.8 2.7 5.1 1.9 "virginica"

"144" 6.8 3.2 5.9 2.3 "virginica"

"145" 6.7 3.3 5.7 2.5 "virginica"

"146" 6.7 3 5.2 2.3 "virginica"

"147" 6.3 2.5 5 1.9 "virginica"

"148" 6.5 3 5.2 2 "virginica"

"149" 6.2 3.4 5.4 2.3 "virginica"

"150" 5.9 3 5.1 1.8 "virginica"

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/209472.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【上海大学数字逻辑实验报告】四、组合电路(三)

一、 实验目的 掌握多路选择器74LS151的原理。掌握译码器74LS138的原理。学会在Quartus II上使用多路选择74LS151设计电路。学会在Quartus II上使用译码器74LS138设计电路。 二、 实验原理 多路选择器又称数据选择器或多路开关,它是一种多路输入单路输出的组合逻…

HHDESK右键管理简介

在HHDESK管理文件,除了基本的打开、删除、复制、粘贴、重命名外,还有多种便捷编辑方式。 可以分别以下列模式打开文档: 文本模式即是以文本编辑器打开文档。 1 二进制模式 可进行二进制编辑。 2 JSON模式 可对JSON文件进行直观的解析…

机器学习中的特征工程

1 特征工程概述 特征工程是机器学习中的一个关键步骤,在机器学习领域中占有非常重要的地位,是机器学习中不可或缺的一部分,下图展示了一个常规的机器学习流程: 特征工程涉及从原始数据中提取、选择和转换特征,以改善模…

“轻松管理文件,一键导出表格,让您的归档工作井井有条“

在忙碌的工作中,我们经常会被大量的文件和数据所困扰。如何有效地管理和整理这些资料,成为了一个让人头疼的问题。今天,我们向您介绍一款强大的文件管理工具——一键导出表格,帮助您轻松解决这个问题。 第一步,首先我们…

区块链实验室(30) - 区块链期刊:Distributed Ledger Technologies: Research and Practice

区块链涉及多学科及技术,众多期刊接收区块链文章。Distributed Ledger Technologies: Research and Practice是ACM出版集团的一本期刊。 Distributed Ledger Technologies: Research and Practice创刊历史很短,始于2022年,出版期数也不多。 载…

Leetcode 剑指 Offer II 056. 两数之和 IV - 输入二叉搜索树

题目难度: 简单 原题链接 今天继续更新 Leetcode 的剑指 Offer(专项突击版)系列, 大家在公众号 算法精选 里回复 剑指offer2 就能看到该系列当前连载的所有文章了, 记得关注哦~ 题目描述 给定一个二叉搜索树的 根节点 root 和一个整数 k , 请判断该二叉…

Java 使用oshi获取当前服务器状态cpu、内存、存储等核心信息

文章目录 简介相关资料maven依赖oshi-官方示例获取CUP信息代码获取内存信息获取磁盘信息 简介 OSHI 是基于 JNA 的(本地)操作系统和硬件信息库。它不需要安装任何其他额外的本地库,旨在提供一种跨平台的实现来检索系统信息,例如操…

[ROS2] --- action

1 action介绍 ROS通信机制也会被常常用到——那就是动作。从这个名字上就可以很好理解这个概念的含义,这种通信机制的目的就是便于对机器人某一完整行为的流程进行管理。 1.1 客户端/服务器模型 动作和服务类似,使用的也是客户端和服务器模型&#xf…

数据结构中处理散列冲突的四种方法

1 开放定址法 1.1 定义 开放定址法就是一旦发生了冲突,就去寻找下一个空的散列地址 1.2 要求 只要散列表足够大 空的散列地址总能找到,并将记录存入 1.3 线性探测法 使用该公式用于解决冲突的开放定址法称为线性探测法 对于线性探测法&#xff0c…

通过kubeadm方式安装k8s

虚拟机最少是 2 core,master内存最小3G,node内存最小2G. 要求的Docker版本是18.03,如果不是安装的docker ce,版本是过旧的,可以选择删除后重新安装; 也可以重新创建一个虚拟机执行以下命令。 简单方法&am…

线性代数基础【1】行列式

第一节 行列式的基本概念和性质 一、基本概念 ①逆序 1,2和2,1是一对逆序 ②逆序数 1,2,3,5,4的逆序数为1;1,3,2,5,4逆序数为4; ③行列式 ④余子数和代数余子数 行列式挖掉一个数(例如aij),将原行列式去掉i行j列的行列式M,则M为余子数,代数余子数记为Aij,如果(ij)为偶数…

云LIS实验室信息管理系统源码——实验室信息管理解决方案

云LIS(Cloud Laboratory Information System)是一种为区域医疗提供临床实验室信息服务的计算机应用程序,其主要功能是协助区域内所有临床实验室相互协调并完成日常检验工作,对区域内的检验数据进行集中管理和共享,通过…

高通CRM的v4l2驱动模型

概述下crm中v4l2框架的初始化创建流程: 对于CRM主设备的v4l2框架创建过程: 1、分配和初始化v4l2 device对象 2、分配和初始化media device对象,然后将v4l2 device中mdev绑定到media device上 3、分配和初始化video device对象&#xff0c…

Python:核心知识点整理大全9-笔记

目录 ​编辑 5.2.4 比较数字 5.2.5 检查多个条件 1. 使用and检查多个条件 2. 使用or检查多个条件 5.2.6 检查特定值是否包含在列表中 5.2.7 检查特定值是否不包含在列表中 banned_users.py 5.2.8 布尔表达式 5.3 if 语句 5.3.1 简单的 if 语句 5.3.2 if-else 语句 …

YOLOv8改进 | 2023 | RCS-OSA替换C2f实现暴力涨点(减少通道的空间对象注意力机制)

一、本文介绍 本文给大家带来的改进机制是RCS-YOLO提出的RCS-OSA模块,其全称是"Reduced Channel Spatial Object Attention",意即"减少通道的空间对象注意力"。这个模块的主要功能是通过减少特征图的通道数量,同时关注空…

Android Studio APK打包指定包名

在最近写的一个案列中尝试用最新版的Android studio对项目进行打包测试,想要指定打包的包名这样便于区分的时候发现以前的许多方法都过时了,查了很多资料才弄明白each被抛弃了。本教程建议先看第三步。 目录 一、配置根目录下gradle.build 二、通过bui…

Billu_b0x

信息收集 #正常进行信息收集就好Starting Nmap 7.94 ( https://nmap.org ) at 2023-11-18 22:07 CST Nmap scan report for 192.168.182.142 (192.168.182.142) Host is up (0.00073s latency).PORT STATE SERVICE 22/tcp open ssh 80/tcp open http | http-cookie-flags:…

VSC改造MD编辑器及图床方案分享

VSC改造MD编辑器及图床方案分享 用了那么多md编辑器,到头来还是觉得VSC最好用。这次就来分享一下我的blog文件编辑流吧。 这篇文章包括:VSC下md功能扩展插件推荐、图床方案、blog文章管理方案 VSC插件 Markdown All in One Markdown Image - 粘粘图片…

【电子通识】为什么电阻都是2.2、3.3、4.7、5.1这样的小数,而不是整数?

刚开始接触电路设计可能会对市面上已经有的电阻值如:2.2Ω、4.7Ω、5.1Ω、22Ω、47Ω、51Ω,通常都不是整数觉得非常困惑,所以查阅了一些资料,总结如下: 电阻是使用指数分布来设计生产的,即遵循国际电工委…

基于STM32 + DMA介绍,应用和步骤详解(ADC多通道)

前言 本篇博客主要学习了解DMA的工作原理和部分寄存器解析,针对ADC多通道来对代码部分,应用部分作详细讲解,掌握代码编程原理。本篇博客大部分是自己收集和整理,如有侵权请联系我删除。 本次博客开发板使用的是正点原子精英版&am…