轻量化YOLOv5改进 | 结合repghost结构冲参数化网络,实现轻量化和加速推理,

RepGhost: A Hardware-Efficient Ghost Module via Re-parameterization

  • 论文总结
  • 本文改进
    • repghost 核心代码
    • 测试参数量和计算量

🔥🔥🔥
“引入RepGhostNet以加速CNN网络推理”
“网络宽度的自定义调整:无缝嵌入YOLOv5”
“通过结构重参数化优化网络性能”
“实现高效和准确的目标检测:YOLOv5s-repghost网络”

🔥🔥🔥
在这里插入图片描述
  这篇论文的主题是在卷积神经网络(CNN)中进行隐式特征重用的硬件高效模块——RepGhost。作者们通过使用结构重参数化而不是连接来减少硬件设备上的计算成本,从而提出了这种新颖的模块。基于RepGhost模块,他们进一步开发了一种硬件高效的CNN,名为RepGhostNet,这种网络在移动设备上的准确性和延迟方面超过了之前的最先进的轻量级CNN。

论文总结

  在深度学习的应用中,卷积神经网络(CNN)已经成

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/20860.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【JVM】(二)深入理解Java类加载机制与双亲委派模型

文章目录 前言一、类加载过程1.1 加载(Loading)1.2 验证(Verification)1.3 准备(Preparation)1.4 解析(Resolution)1.5 初始化(Initialization) 二、双亲委派…

数字化采购:提升效率、优化供应链的新趋势

随着信息技术的快速发展,数字化采购正成为企业追求效率和优化供应链的新趋势。数字化采购是利用数字技术和互联网平台,实现采购流程的自动化和在线化。本文将围绕数字化采购的应用场景,探讨其在采购环节中带来的效益与优势。 一、在线供应商…

分布式限流方案及实现

优质博文:IT-BLOG-CN 一、限流的作用和意义 限流是对高并发访问进行限制,限速的过程。通过限流来限制资源,可以提高系统的稳定性和可靠性,控制系统的负载,削峰填谷,保证服务质量。 服务限流后的常见处理…

重磅!EBImage包:为何如此火爆?它的图像处理到底有何不可思议之处?

一、简介 1.1 EBImage包简介 EBImage包是一个广受欢迎的用于图像处理和分析的R语言包。它提供了一套全面而强大的功能,支持多种图像格式的读取和写入,处理多维图像数据,并提供了各种先进的图像处理算法、特征提取和测量函数。 1.2 EBImage爆火…

DAY1,C高级(命令,Linux的文件系统,软、硬链接文件)

1.创建链接文件; 文件系统中的每个文件都与唯一的 inode 相关联,inode 存储了文件的元数据和数据块的地址,文件名与 inode 之间的链接关系称为硬链接或软链接。 硬链接文件的创建: ln 被链接文件的绝对路径 硬链接文件的绝对…

nsqd的架构及源码分析

文章目录 一 nsq的整体代码结构 二 回顾nsq的整体架构图 三 nsqd进程的作用 四 nsqd启动流程的源码分析 五 本篇博客总结 在博客 nsq整体架构及各个部件作用详解_YZF_Kevin的博客-CSDN博客 中我们讲了nsq的整体框架,各个部件的大致作用。如果没看过的&…

论文笔记——Influence Maximization in Undirected Networks

Influence Maximization in Undirected Networks ContributionMotivationPreliminariesNotations Main resultsReduction to Balanced Optimal InstancesProving Theorem 3.1 for Balanced Optimal Instances Contribution 好久没发paper笔记了,这篇比较偏理论&…

pytorch 中 view 和reshape的区别

在 PyTorch(一个流行的深度学习框架)中, reshape 和 view 都是用于改变张量(tensor)形状的方法,但它们在实现方式和使用上有一些区别。下面是它们之间的主要区别: 实现方式: reshap…

html学习7(iframe)

1、通过使用iframe标签定义框架,可在同一个浏览器中显示不止一个画面。 2、height和width属性用于定义框架的高度与宽度。 3、属性frameborder‘0’用于是否显示边框。 4、iframe可以显示一个目标链接的页面,链接的target属性设置为相应的iframe名称。…

2023年华数杯C题思路

c题 母亲身心健康对婴儿成长的影响 母亲是婴儿生命中最重要的人之一,她不仅为婴儿提供营养物质和身体保护,还为婴儿提供情感支持和安全感。母亲心理健康状态的不良状况,如抑郁、焦虑压力等,可能会对婴儿的认知、情感、社会行为等方面产生负面影响。压力…

2023年华数杯C题详细思路

2023年华数杯作为与国赛同频的比赛(都是周四6点发题,周日晚8点交卷),也是暑期唯一一个正式比赛。今年的报名队伍已经高达6000多对。基于这么多的人数进行国赛前队伍的练习,以及其他用途。为了方便大家跟更好的选题&…

机器学习03-数据理解(小白快速理解分析Pima Indians数据集)

机器学习数据理解是指对数据集进行详细的分析和探索,以了解数据的结构、特征、分布和质量。数据理解是进行机器学习项目的重要第一步,它有助于我们对数据的基本属性有全面的了解,并为后续的数据预处理、特征工程和模型选择提供指导。 数据理解…

vue 图片回显标签

第一种 <el-form-item label"打款银行回单"><image-preview :src"form.bankreceiptUrl" :width"120" :height"120"/></el-form-item>// 值为 https://t11.baidu.com/it/app106&fJPEG&fm30&fmtauto&…

SpringBoot整合Caffeine

一、Caffeine介绍 1、缓存介绍 缓存(Cache)在代码世界中无处不在。从底层的CPU多级缓存&#xff0c;到客户端的页面缓存&#xff0c;处处都存在着缓存的身影。缓存从本质上来说&#xff0c;是一种空间换时间的手段&#xff0c;通过对数据进行一定的空间安排&#xff0c;使得下…

如何使用免费敏捷工具Leangoo领歌管理Sprint Backlog

什么是Sprint Backlog&#xff1f; Sprint Backlog是Scrum的主要工件之一。在Scrum中&#xff0c;团队按照迭代的方式工作&#xff0c;每个迭代称为一个Sprint。在Sprint开始之前&#xff0c;PO会准备好产品Backlog&#xff0c;准备好的产品Backlog应该是经过梳理、估算和优先…

JVM调优工具详解以及实战

准备 事先启动一个web应用程序&#xff0c;用jps查看进程id&#xff0c;接着用各种jdk自带的命令优化应用 Jmap jmap -histo 6160 #查看历史生成的实例 jmap -histo:live 6160 #查看当前存活的实例&#xff0c;执行过程中可能会触发一次full gc jmap -histo:live 6160 &…

Chapter 11: Tuples | Python for Everybody 讲义笔记_En

文章目录 Python for Everybody课程简介TuplesTuples are immutableComparing tuplesTuple assignmentDictionaries and tuplesMultiple assignment with dictionariesThe most common wordsUsing tuples as keys in dictionariesSequences: strings, lists, and tuples - Oh M…

FTP文件传输协议

FTP文件传输协议 介绍 将某台计算机中的文件通过网络传送到可能相距很远的另一台计算机中&#xff0c;是一项基本的网络应用&#xff0c;即文件传送文件传输协议(File Transfer Protocol)是因特网上使用得最广泛的文件传输协议 FTP提供交互式访问&#xff0c;允许客户指明文件…

frida学习及使用

文章目录 安装frida安装python3.7设置环境变量安装pycharm和nodejs 使用frida将frida-server push到手机设备中端口转发安装apk使用jadx查看java代码运行frida-server frida源码阅读frida hook方法Frida Java层hoookJavaHook.javaJavaHook.js Frida native层hook 一NativeHook.…

YOLOv5:使用7.0版本训练自己的实例分割模型(车辆、行人、路标、车道线等实例分割)

YOLOv5&#xff1a;使用7.0版本训练自己的实例分割模型&#xff08;车辆、行人、路标、车道线等实例分割&#xff09; 前言前提条件相关介绍使用YOLOv5-7.0版本训练自己的实例分割模型YOLOv5项目官方源地址下载yolov5-7.0版源码解压目录结构 准备实例分割数据集在./data目录下&…