JVM 对象内存布局篇

对象的实例化

创建对象有哪些方式?

1、new对象

最常见的方式
变形1:X的静态方法
变形2:XxxBuilder/XxxFactory的静态方法

2、Class的newlnstance0:反射的方式,只能调用空参的构造器,权限必须是public

3、Constructor的newinstance(X):反射的方式,可以调用空参、带参的构造器,权限没有要求,实用性更广

4、使用clone():不调用任何构造器,当前类需要实现Cloneable接口,实现clone(),默认浅拷贝

class Teacher{
    int age;
    Student stu;

}

Teacher t1 = new Teacher(12,new Student("赵丽颖"));
Teacher t2 = t1.clone();

5、使用反序列化:从文件中、数据库中、网络中获取一个对象的二进制流,反序列化为内存中的对象

6、第三方库Objenesis,利用了asm字节码技术,动态生成Constructor对象

典型用途:

        需要在不调用构造函数的情况下实例化对象是一项相当特殊的任务,但是在某些情况下这是有用的:

  • 序列化,远程调用和持久化-对象需要被实例化并恢复到特定的状态,而不需要调用代码
  • 代理、 AOP 库和 mock 对象-类可以被子类继承而子类不用担心父类的构造器
  • 容器框架-对象可以以非标准的方式动态地实例化

创建对象的步骤

面试题

        new对象流程?(龙湖地产)
        对象创建方法,对象的内存分配。(360安全)

从字节码角度看待对象创建过程

        下面从最简单的Object ref = new Object(); 代码进行分析,利用javap -verbose -p 命令查看对象创建的字节码如下:

        NEW :如果找不到Class对象,则进行类加载。加载成功后,则在堆中分配内存,从Object 开始到本类路径上的所有属性值都要分配内存。分配完毕之后,进行零值初始化。在分配过程中,注意引用是占据存储空间的,它是一个变量,占用4个字节。这个指令完毕后,将指向实例对象的引用变量压入虚拟机栈顶。

        DUP :在栈顶复制该引用变量,这时的栈顶有两个指向堆内实例对象的引用变量。如果<init> 方法有参数,还需要把参数压人操作栈中。两个引用变量的目的不同,其中压至底下的引用用于赋值,或者保存到局部变量表,另一个栈顶的引用变量作为句柄调用相关方法。

        INVOKESPECIAL :调用对象实例方法,通过栈顶的引用变量调用<init> 方法。

        补充:<clinit> 是类初始化时执行的方法, 而<init> 是对象初始化时执行的方法。

从执行步骤角度分析

1.判断对象对应的类是否加载、链接、初始化

        虚拟机遇到一条new指令,首先去检查这个指令的参数能否在Metaspace的常量池中定位到一个类的符号引用,并且检查这个符号引用代表的类是否已经被加载、解析和初始化。(即判断类元信息是否存在)。

  • 如果没有,那么在双亲委派模式下,使用当前类加载器以ClassLoader+包名+类名为Key进行查找对应的.class 文件。
  • 如果没有找到文件,则抛出ClassNotFoundException 异常。
  • 如果找到,则进行类加载,并生成对应的Class类对象。

2.为对象分配内存

        首先计算对象占用空间大小,接着在堆中划分一块内存给新对象。如果实例成员变量是引用变量,仅分配引用变量空间即可,即4个字节大小。

        说明:选择哪种分配方式由Java堆是否规整决定,而Java堆是否规整又由所采用的垃圾收集器是否带有压缩整理功能决定。

        指针碰撞:如果内存规整,使用指针碰撞

                如果内存是规整的,那么虚拟机将采用的是指针碰撞法(Bump The Pointer)来为对象分配内存。意思是所有用过的内存在一边,空闲的内存在另外一边,中间放着一个指针作为分界点的指示器,分配内存就仅仅是把指针向空闲那边挪动一段与对象大小相等的距离罢了。 如果垃圾收集器选择的是Serial、ParNew这种基于压缩算法的,虚拟机采用这种分配方式。 一般使用带有compact(整理)过程的收集器时,使用指针碰撞。

        空闲列表:如果内存不规整,虚拟机需要维护一个列表,使用空闲列表分配

                如果内存不是规整的,已使用的内存和未使用的内存相互交错,那么虚拟机将采用的是空闲列表法来为对象分配内存。意思是虚拟机维护了一个列表,记录上哪些内存块是可用的,再分配的时候从列表中找到一块足够大的空间划分给对象实例,并更新列表上的内容。这种分配方式称为“空闲列表(Free List)”。

3.处理并发安全问题

        在分配内存空间时,另外一个问题是及时保证new对象时候的线程安全性:创建对象是非常频繁的操作,虚拟机需要解决并发问题。 虚拟机采用了两种方式解决并发问题:

  • CAS ( Compare And Swap )失败重试、区域加锁:保证指针更新操作的原子性;
  • TLAB 把内存分配的动作按照线程划分在不同的空间之中进行,即每个线程在Java堆中预先分配一小块内存,称为本地线程分配缓冲区,(TLAB ,Thread Local Allocation Buffer)虚拟机是否使用TLAB,可以通过-XX:+/-UseTLAB参数来设定。

4.初始化分配到的空间

        内存分配结束,虚拟机将分配到的内存空间都初始化为零值(不包括对象头)。这一步保证了对象的实例字段在Java代码中可以不用赋初始值就可以直接使用,程序能访问到这些字段的数据类型所对应的零值。

5.设置对象的对象头

        将对象的所属类(即类的元数据信息)、对象的HashCode和对象的GC信息、锁信息等数据存储在对象的对象头中。这个过程的具体设置方式取决于JVM实现。

6.执行init方法进行初始化

        在Java程序的视角看来,初始化才正式开始。初始化成员变量,执行实例化代码块,调用类的构造方法,并把堆内对象的首地址赋值给引用变量。因此一般来说(由字节码中是否跟随有invokespecial指令所决定),new指令之后会接着就是执行方法,把对象按照程序员的意愿进行初始化,这样一个真正可用的对象才算完全创建出来。

对象的内存布局

对象头(Header)

面试题

        Java对象头里有什么  (蚂蚁金服)
        对象头信息里面有哪些东西? (美团)

        对象在JVM中是怎么存储的

对象头:它主要包括两部分。

  • 一个是对象自身的运行时元数据(mark word)
    • 哈希值(hashcode):对象在堆空间中都有一个首地址值,栈空间的引用根据这个地址指向堆中的对象,这就是哈希值起的作用
    • GC分代年龄:对象首先是在Eden中创建的,在经过多次GC后,如果没有被进行回收,就会在survivor中来回移动,其对应的年龄计数器会发生变化,达到阈值后会进入养老区
    • 锁状态标志,在同步中判断该对象是否是锁
    • 线程持有的锁
    • 线程偏向ID
    • 偏向时间戳
  • 另一个是类型指针,指向元数据区的类元数据InstanceKlass,确定该对象所属的类型
  • 此外,如果对象是一个数组,对象头中还必须有一块用于记录数组的长度的数据。
    • 因为正常对象元数据就知道对象的确切大小。所以数组必须得知道长度。

实例数据(Instance Data)

作用:它是对象真正存储的有效信息,包括程序代码中定义的各种类型的字段(包括从父类继承下来的和本身拥有的字段)。

这里需要遵循的一些规则:

        相同宽度的字段总是被分配在一起

        父类中定义的变量会出现在子类之前(因为父类的加载是优先于子类加载的)

        如果CompactFields参数为true(默认为true):子类的窄变量可能插入到父类变量的空隙

对齐填充(Padding)

对齐填充:不是必须的,也没特别含义,仅仅起到占位符的作用 

对象的访问定位

创建对象的目的是为了使用它。定位,通过栈上reference访问。

JVM是如何通过栈帧中的对象引用访问到其内部的对象实例的呢?

《java虚拟机规范》没有说明,所以对象访问方式由虚拟机实现而定。主流有两种方式:

  • 使用句柄访问
  • 使用直接指针访问

方式1:句柄访问

  • 实现:堆需要划分出一块内存来做句柄池,reference中存储对象的句柄池地址,句柄中包含对象实例与类型数据各自具体的地址信息。
  • 好处:reference中存储稳定句柄地址,对象被移动(垃圾收集时移动对象很普遍)时只会改变句柄中实例数据指针,reference本身不需要被修改。

方式2:直接使用指针访问

  • 实现:reference中存储的就是对象的地址,如果只是访问对象本身的话,就不需要多一次间接访问的开销。
  • 好处:速度更快,java中对象访问频繁,每次访问都节省了一次指针定位的时间开销。

HotSpot使用哪种方式的呢?

        HotSpot这里主要使用第2种方式:直接指针访问

        JVM可以通过对象引用准确定位到Java堆区中的instanceOopDesc对象,这样既可成功访问到对象的实例信息,当需要访问目标对象的具体类型时,JVM则会通过存储在instanceOopDesc中的元数据指针定位到存储在方法区中的instanceKlass对象上。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/203897.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

可视化监管云平台EasyCVR宠物粮食食品厂智能视频监控方案

由于我国养宠物群体的不断膨胀&#xff0c;宠物市场也占据了经济的很大一部分&#xff0c;宠物做为人类的好朋友&#xff0c;可以给人们带来极高的精神抚慰&#xff0c;作为“毛孩子”家长&#xff0c;爱宠人士自然不会亏待自家宠物&#xff0c;都会选择最好的口粮以供宠物食用…

【开源】基于Vue+SpringBoot的教学过程管理系统

项目编号&#xff1a; S 054 &#xff0c;文末获取源码。 \color{red}{项目编号&#xff1a;S054&#xff0c;文末获取源码。} 项目编号&#xff1a;S054&#xff0c;文末获取源码。 目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 教师端2.2 学生端2.3 微信小程序端2…

CompletableFuture:Java中的异步编程利器

前言&#xff1a; 在秋招的面试中&#xff0c;面试官问了很多关于异步编程相关的知识点&#xff0c;朋友最近也和我聊到了这个话题&#xff0c;因此今天咱们来讨论讨论这个知识点&#xff01; 随着现代软件系统的日益复杂&#xff0c;对于非阻塞性和响应性的需求也在不断增加…

3 文本分类入门finetune:bert-base-chinese

项目实战&#xff1a; 数据准备工作 bert-base-chinese 是一种预训练的语言模型&#xff0c;基于 BERT&#xff08;Bidirectional Encoder Representations from Transformers&#xff09;架构&#xff0c;专门用于中文自然语言处理任务。BERT 是由 Google 在 2018 年提出的一…

gpt1与bert区别

区别1&#xff1a;网络结构&#xff08;主要是Masked Multi-Head-Attention和Multi-Head-Attention&#xff09; gpt1使用transformer的decoder&#xff0c;单向编码&#xff0c;是一种基于语言模型的生成式模型&#xff0c;更适合生成下一个单词或句子 bert使用transformer的…

Domino多Web站点托管

大家好&#xff0c;才是真的好。 看到一篇文档&#xff0c;大概讲述的是他在家里架了一台Domino服务器&#xff0c;上面跑了好几个Internet的Web网站&#xff08;使用Internet站点&#xff09;。再租了一台云服务器&#xff0c;上面安装Nginx做了反向代理&#xff0c;代理访问…

轨迹分析:Palantir评估细胞分化潜能 类似于monocle2

轨迹分析是单细胞测序分析中重要的组成部分&#xff0c;它基于细胞谱系之间“具有中间态细胞”的理论基础&#xff0c;通过结合先验知识&#xff08;细胞注释、markers&#xff09;、细胞基因表达改变等&#xff0c;为在单细胞测序数据赋予了“假时间”&#xff08;pseudotime&…

图的深度优先搜索(数据结构实训)

题目&#xff1a; 图的深度优先搜索 描述&#xff1a; 图的深度优先搜索类似于树的先根遍历&#xff0c;是树的先根遍历的推广。即从某个结点开始&#xff0c;先访问该结点&#xff0c;然后深度访问该结点的第一棵子树&#xff0c;依次为第二顶子树。如此进行下去&#xff0c;直…

每天五分钟计算机视觉:通过残差块搭建卷积残差神经网络Resnet

本文重点 随着深度神经网络的层数的增加,神经网络会变得越来越难以训练,之所以这样就是因为存在梯度消失和梯度爆炸问题。本节课程我们将学习跳跃连接方式,它可以从某一网络层获取激活a,然后迅速反馈给另外一层,甚至是神经网络的更深层,从而解决梯度消失的问题。 传统的…

关于命令行方式的MySQL服务无法启动问题原因之一解决

这里无法启动服务的原因为系统某些进行占用了3306端口问题 当你遇到无法启动的问题时&#xff0c;可以尝试通过netstat -ano命令查看系统进行信息&#xff0c;验证是否3306端口被占用 在本地地址列如果发现3306端口被占用&#xff0c;则通过 taskkill /f /pid 进程id命令关闭进…

matlab 点云放缩变换

目录 一、算法原理二、代码实现三、结果展示四、相关链接本文由CSDN点云侠原创,原文链接。爬虫网站自重。如果你不是在点云侠的博客中看到该文章,那么此处便是不要脸的爬虫与GPT。 一、算法原理 缩放可以独立应用于三个坐标轴,如将点 ( x , y , z ) ( x

dtm分布式事务框架之SAGA 实战

一.dtm分布式事务框架之SAGA 1.1DTM介绍 DTM是一款开源的分布式事务管理器&#xff0c;解决跨数据库、跨服务、跨语言栈更新数据的一致性问题。 通俗一点说&#xff0c;DTM提供跨服务事务能力&#xff0c;一组服务要么全部成功&#xff0c;要么全部回滚&#xff0c;避免只更…

【天线了解】1.004天线的了解以及使用

一。004天线使用步骤 1.打开天线 &#xff08;1&#xff09;天线的各种版本 注意&#xff1a; 《1》天线包括单通道天线程序&#xff0c;双通道天线程序等。 《2》在没有连接天线时&#xff0c;有的天线程序打不开。 &#xff08;2&#xff09;打开软件前的配置工作 注意&…

接鸡冠^^

欢迎来到程序小院 接鸡冠 玩法&#xff1a;左右移动棒棒君(小海豹)接住鸡冠&#xff0c;避开炸弹&#xff0c;若不小心接住炸弹则游戏结束&#xff0c; 赶紧接鸡冠吧&#xff0c;看看你能够接住多少鸡冠哦^^。。开始游戏https://www.ormcc.com/play/gameStart/211 html <di…

【精选】设计模式——策略设计模式-两种举例说明,具体代码实现

Java策略设计模式 简介 策略设计模式是一种行为型设计模式&#xff0c;它允许在运行时选择算法的行为。 在软件开发中&#xff0c;我们常常需要根据不同情况采取不同的行为。通常的做法是使用大量的条件语句来实现这种灵活性&#xff0c;但这会导致代码变得复杂、难以维护和扩…

Unity打包EXE自定义(拖拽)窗口大小

代码 using System.Collections; using System.Collections.Generic; using UnityEngine; using System; using System.Runtime.InteropServices; public class MyWindow : MonoBehaviour {[DllImport("user32.dll")]private static extern IntPtr GetActiveWindow(…

CSS-自适应导航栏(flex | grid)

目标&#xff1a;实现左右各有按钮&#xff0c;中间是内容&#xff0c;自适应显示中间的内容导航栏&#xff0c;即 根据中间的宽度大小显示内容。 自适应导航栏 总结&#xff1a;推荐 flex布局 / grid布局 flex布局&#xff1a; 两侧 flex:1; ----->中间自适应 grid布局&…

uniapp(微信小程序)聊天实例,支持图片,语音,表情(附源码)

效果预览 安装教程 配置 请参考Dome 会话配置 {info:{// 用户关键字userKey:2666,// 用户手机userPhone:15252156614,// 用户昵称userName: 健健,// 头像headImg: http://d.hiphotos.baidu.com/image/h%3D300/sign0defb42225381f3081198ba999004c67/6159252dd42a2834a75bb01…

CRM客户关系管理系统的主要功能有哪些?

我们都知道&#xff0c;CRM系统可以帮助企业加快业务增长。如果一个企业能提高业务效率、跨团队协作、有效管理客户、轻松共享和同步数据&#xff0c;那么企业竞争力将极大地提高。基于此&#xff0c;我们说说CRM客户关系管理系统的主要功能分析。 完整的CRM是什么样的&#x…

红队专题-开源资产扫描系统-ARL资产灯塔系统

ARL资产灯塔系统 安装说明问题 &#xff1a; 安装说明 源码地址 https://github.com/TophantTechnology/ARL https://github.com/TophantTechnology/ARL/wiki/Docker-%E7%8E%AF%E5%A2%83%E5%AE%89%E8%A3%85-ARL 安装环境 uname -a Linux VM-24-12-centos 3.10.0-1160.49.1.e…