竞赛选题 题目:基于深度学习的图像风格迁移 - [ 卷积神经网络 机器视觉 ]

文章目录

  • 0 简介
  • 1 VGG网络
  • 2 风格迁移
  • 3 内容损失
  • 4 风格损失
  • 5 主代码实现
  • 6 迁移模型实现
  • 7 效果展示
  • 8 最后

0 简介

🔥 优质竞赛项目系列,今天要分享的是

基于深度学习卷积神经网络的花卉识别

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

图片风格迁移指的是将一个图片的风格转换到另一个图片中,如图所示:

在这里插入图片描述
原图片经过一系列的特征变换,具有了新的纹理特征,这就叫做风格迁移。

1 VGG网络

在实现风格迁移之前,需要先简单了解一下VGG网络(由于VGG网络不断使用卷积提取特征的网络结构和准确的图像识别效率,在这里我们使用VGG网络来进行图像的风格迁移)。

在这里插入图片描述
如上图所示,从A-
E的每一列都表示了VGG网络的结构原理,其分别为:VGG-11,VGG-13,VGG-16,VGG-19,如下图,一副图片经过VGG-19网络结构可以最后得到一个分类结构。

在这里插入图片描述

2 风格迁移

对一副图像进行风格迁移,需要清楚的有两点。

  • 生成的图像需要具有原图片的内容特征
  • 生成的图像需要具有风格图片的纹理特征

根据这两点,可以确定,要想实现风格迁移,需要有两个loss值:
一个是生成图片的内容特征与原图的内容特征的loss,另一个是生成图片的纹理特征与风格图片的纹理特征的loss。

而对一张图片进行不同的特征(内容特征和纹理特征)提取,只需要使用不同的卷积结构进行训练即可以得到。这时我们需要用到两个神经网络。

再回到VGG网络上,VGG网络不断使用卷积层来提取特征,利用特征将物品进行分类,所以该网络中提取内容和纹理特征的参数都可以进行迁移使用。故需要将生成的图片经过VGG网络的特征提取,再分别针对内容和纹理进行特征的loss计算。

在这里插入图片描述
如图,假设初始化图像x(Input image)是一张随机图片,我们经过fw(image Transform Net)网络进行生成,生成图片y。
此时y需要和风格图片ys进行特征的计算得到一个loss_style,与内容图片yc进行特征的计算得到一个loss_content,假设loss=loss_style+loss_content,便可以对fw的网络参数进行训练。

现在就可以看网上很常见的一张图片了:

在这里插入图片描述
相较于我画的第一张图,这即对VGG内的loss求值过程进行了细化。

细化的结果可以分为两个方面:

  • (1)内容损失
  • (2)风格损失

3 内容损失

由于上图中使用的模型是VGG-16,那么即相当于在VGG-16的relu3-3处,对两张图片求得的特征进行计算求损失,计算的函数如下:

在这里插入图片描述

简言之,假设yc求得的特征矩阵是φ(y),生成图片求得的特征矩阵为φ(y^),且c=φ.channel,w=φ.weight,h=φ.height,则有:

在这里插入图片描述

代码实现:

def content_loss(content_img, rand_img):content_layers = [('relu3_3', 1.0)]content_loss = 0.0# 逐个取出衡量内容损失的vgg层名称及对应权重for layer_name, weight in content_layers:# 计算特征矩阵p = get_vgg(content_img, layer_name)x = get_vgg(rand_img, layer_name)# 长x宽xchannelM = p.shape[1] * p.shape[2] * p.shape[3]# 根据公式计算损失,并进行累加content_loss += (1.0 / M) * tf.reduce_sum(tf.pow(p - x, 2)) * weight# 将损失对层数取平均content_loss /= len(content_layers)return content_loss

4 风格损失

风格损失由多个特征一同计算,首先需要计算Gram Matrix

在这里插入图片描述
Gram Matrix实际上可看做是feature之间的偏心协方差矩阵(即没有减去均值的协方差矩阵),在feature
map中,每一个数字都来自于一个特定滤波器在特定位置的卷积,因此每个数字就代表一个特征的强度,而Gram计算的实际上是两两特征之间的相关性,哪两个特征是同时出现的,哪两个是此消彼长的等等,同时,Gram的对角线元素,还体现了每个特征在图像中出现的量,因此,Gram有助于把握整个图像的大体风格。有了表示风格的Gram
Matrix,要度量两个图像风格的差异,只需比较他们Gram Matrix的差异即可。 故在计算损失的时候函数如下:

在这里插入图片描述
在实际使用时,该loss的层级一般选择由低到高的多个层,比如VGG16中的第2、4、7、10个卷积层,然后将每一层的style loss相加。

在这里插入图片描述
第三个部分不是必须的,被称为Total Variation
Loss。实际上是一个平滑项(一个正则化项),目的是使生成的图像在局部上尽可能平滑,而它的定义和马尔科夫随机场(MRF)中使用的平滑项非常相似。
其中yn+1是yn的相邻像素。

代码实现以上函数:

# 求gamm矩阵
def gram(x, size, deep):x = tf.reshape(x, (size, deep))g = tf.matmul(tf.transpose(x), x)return gdef style_loss(style_img, rand_img):style_layers = [('relu1_2', 0.25), ('relu2_2', 0.25), ('relu3_3', 0.25), ('reluv4_3', 0.25)]style_loss = 0.0# 逐个取出衡量风格损失的vgg层名称及对应权重for layer_name, weight in style_layers:# 计算特征矩阵a = get_vgg(style_img, layer_name)x = get_vgg(rand_img, layer_name)# 长x宽M = a.shape[1] * a.shape[2]N = a.shape[3]# 计算gram矩阵A = gram(a, M, N)G = gram(x, M, N)# 根据公式计算损失,并进行累加style_loss += (1.0 / (4 * M * M * N * N)) * tf.reduce_sum(tf.pow(G - A, 2)) * weight# 将损失对层数取平均style_loss /= len(style_layers)return style_loss

5 主代码实现

代码实现主要分为4步:

  • 1、随机生成图片

  • 2、读取内容和风格图片

  • 3、计算总的loss

  • 4、训练修改生成图片的参数,使得loss最小

      * def main():# 生成图片rand_img = tf.Variable(random_img(WIGHT, HEIGHT), dtype=tf.float32)with tf.Session() as sess:content_img = cv2.imread('content.jpg')style_img = cv2.imread('style.jpg')# 计算loss值cost = ALPHA * content_loss(content_img, rand_img) + BETA * style_loss(style_img, rand_img)optimizer = tf.train.AdamOptimizer(LEARNING_RATE).minimize(cost)sess.run(tf.global_variables_initializer())for step in range(TRAIN_STEPS):# 训练sess.run([optimizer,  rand_img])if step % 50 == 0:img = sess.run(rand_img)img = np.clip(img, 0, 255).astype(np.uint8)name = OUTPUT_IMAGE + "//" + str(step) + ".jpg"cv2.imwrite(name, img)

    6 迁移模型实现

由于在进行loss值求解时,需要在多个网络层求得特征值,并根据特征值进行带权求和,所以需要根据已有的VGG网络,取其参数,重新建立VGG网络。
注意:在这里使用到的是VGG-19网络:

在重建的之前,首先应该下载Google已经训练好的VGG-19网络,以便提取出已经训练好的参数,在重建的VGG-19网络中重新利用。

在这里插入图片描述
下载得到.mat文件以后,便可以进行网络重建了。已知VGG-19网络的网络结构如上述图1中的E网络,则可以根据E网络的结构对网络重建,VGG-19网络:

在这里插入图片描述
进行重建即根据VGG-19模型的结构重新创建一个结构相同的神经网络,提取出已经训练好的参数作为新的网络的参数,设置为不可改变的常量即可。

def vgg19():layers=('conv1_1','relu1_1','conv1_2','relu1_2','pool1','conv2_1','relu2_1','conv2_2','relu2_2','pool2','conv3_1','relu3_1','conv3_2','relu3_2','conv3_3','relu3_3','conv3_4','relu3_4','pool3','conv4_1','relu4_1','conv4_2','relu4_2','conv4_3','relu4_3','conv4_4','relu4_4','pool4','conv5_1','relu5_1','conv5_2','relu5_2','conv5_3','relu5_3','conv5_4','relu5_4','pool5')vgg = scipy.io.loadmat('D://python//imagenet-vgg-verydeep-19.mat')weights = vgg['layers'][0]network={}net = tf.Variable(np.zeros([1, 300, 450, 3]), dtype=tf.float32)network['input'] = netfor i,name in enumerate(layers):layer_type=name[:4]if layer_type=='conv':kernels = weights[i][0][0][0][0][0]bias = weights[i][0][0][0][0][1]conv=tf.nn.conv2d(net,tf.constant(kernels),strides=(1,1,1,1),padding='SAME',name=name)net=tf.nn.relu(conv + bias)elif layer_type=='pool':net=tf.nn.max_pool(net,ksize=(1,2,2,1),strides=(1,2,2,1),padding='SAME')network[name]=netreturn network

由于计算风格特征和内容特征时数据都不会改变,所以为了节省训练时间,在训练之前先计算出特征结果(该函数封装在以下代码get_neck()函数中)。

总的代码如下:

import tensorflow as tfimport numpy as npimport scipy.ioimport cv2import scipy.miscHEIGHT = 300WIGHT = 450LEARNING_RATE = 1.0NOISE = 0.5ALPHA = 1BETA = 500TRAIN_STEPS = 200OUTPUT_IMAGE = "D://python//img"STYLE_LAUERS = [('conv1_1', 0.2), ('conv2_1', 0.2), ('conv3_1', 0.2), ('conv4_1', 0.2), ('conv5_1', 0.2)]CONTENT_LAYERS = [('conv4_2', 0.5), ('conv5_2',0.5)]def vgg19():layers=('conv1_1','relu1_1','conv1_2','relu1_2','pool1','conv2_1','relu2_1','conv2_2','relu2_2','pool2','conv3_1','relu3_1','conv3_2','relu3_2','conv3_3','relu3_3','conv3_4','relu3_4','pool3','conv4_1','relu4_1','conv4_2','relu4_2','conv4_3','relu4_3','conv4_4','relu4_4','pool4','conv5_1','relu5_1','conv5_2','relu5_2','conv5_3','relu5_3','conv5_4','relu5_4','pool5')vgg = scipy.io.loadmat('D://python//imagenet-vgg-verydeep-19.mat')weights = vgg['layers'][0]network={}net = tf.Variable(np.zeros([1, 300, 450, 3]), dtype=tf.float32)network['input'] = netfor i,name in enumerate(layers):layer_type=name[:4]if layer_type=='conv':kernels = weights[i][0][0][0][0][0]bias = weights[i][0][0][0][0][1]conv=tf.nn.conv2d(net,tf.constant(kernels),strides=(1,1,1,1),padding='SAME',name=name)net=tf.nn.relu(conv + bias)elif layer_type=='pool':net=tf.nn.max_pool(net,ksize=(1,2,2,1),strides=(1,2,2,1),padding='SAME')network[name]=netreturn network# 求gamm矩阵def gram(x, size, deep):x = tf.reshape(x, (size, deep))g = tf.matmul(tf.transpose(x), x)return gdef style_loss(sess, style_neck, model):style_loss = 0.0for layer_name, weight in STYLE_LAUERS:# 计算特征矩阵a = style_neck[layer_name]x = model[layer_name]# 长x宽M = a.shape[1] * a.shape[2]N = a.shape[3]# 计算gram矩阵A = gram(a, M, N)G = gram(x, M, N)# 根据公式计算损失,并进行累加style_loss += (1.0 / (4 * M * M * N * N)) * tf.reduce_sum(tf.pow(G - A, 2)) * weight# 将损失对层数取平均style_loss /= len(STYLE_LAUERS)return style_lossdef content_loss(sess, content_neck, model):content_loss = 0.0# 逐个取出衡量内容损失的vgg层名称及对应权重for layer_name, weight in CONTENT_LAYERS:# 计算特征矩阵p = content_neck[layer_name]x = model[layer_name]# 长x宽xchannelM = p.shape[1] * p.shape[2]N = p.shape[3]lss = 1.0 / (M * N)content_loss += lss * tf.reduce_sum(tf.pow(p - x, 2)) * weight# 根据公式计算损失,并进行累加# 将损失对层数取平均content_loss /= len(CONTENT_LAYERS)return content_lossdef random_img(height, weight, content_img):noise_image = np.random.uniform(-20, 20, [1, height, weight, 3])random_img = noise_image * NOISE + content_img * (1 - NOISE)return random_imgdef get_neck(sess, model, content_img, style_img):sess.run(tf.assign(model['input'], content_img))content_neck = {}for layer_name, weight in CONTENT_LAYERS:# 计算特征矩阵p = sess.run(model[layer_name])content_neck[layer_name] = psess.run(tf.assign(model['input'], style_img))style_content = {}for layer_name, weight in STYLE_LAUERS:# 计算特征矩阵a = sess.run(model[layer_name])style_content[layer_name] = areturn content_neck, style_contentdef main():model = vgg19()content_img = cv2.imread('D://a//content1.jpg')content_img = cv2.resize(content_img, (450, 300))content_img = np.reshape(content_img, (1, 300, 450, 3)) - [128.0, 128.2, 128.0]style_img = cv2.imread('D://a//style1.jpg')style_img = cv2.resize(style_img, (450, 300))style_img = np.reshape(style_img, (1, 300, 450, 3)) - [128.0, 128.2, 128.0]# 生成图片rand_img = random_img(HEIGHT, WIGHT, content_img)with tf.Session() as sess:# 计算loss值content_neck, style_neck = get_neck(sess, model, content_img, style_img)cost = ALPHA * content_loss(sess, content_neck, model) + BETA * style_loss(sess, style_neck, model)optimizer = tf.train.AdamOptimizer(LEARNING_RATE).minimize(cost)sess.run(tf.global_variables_initializer())sess.run(tf.assign(model['input'], rand_img))for step in range(TRAIN_STEPS):print(step)# 训练sess.run(optimizer)if step % 10 == 0:img = sess.run(model['input'])img += [128, 128, 128]img = np.clip(img, 0, 255).astype(np.uint8)name = OUTPUT_IMAGE + "//" + str(step) + ".jpg"img = img[0]cv2.imwrite(name, img)img = sess.run(model['input'])img += [128, 128, 128]img = np.clip(img, 0, 255).astype(np.uint8)cv2.imwrite("D://end.jpg", img[0])main()

7 效果展示

在这里插入图片描述

8 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/199560.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

CoreDNS实战(三)-CoreDNS+ETCD实现DNS负载均衡

1 概述 DNS负载均衡简单来说就是通过一个域名绑定多个IP地址,当客户端访问域名时,DNS服务器将轮询返回其中一个IP,实现客户端分流的作用。 在K8s环境中CoreDNS作为容器服务的DNS服务器,那么就可以通过CoreDNS来实现DNS负载均衡&a…

【Linux】基础IO--重定向理解Linux下一切皆文件缓冲区

文章目录 一、重定向1.什么是重定向2.dup2 系统调用3.理解输入重定向、输出重定向和追加重定向4.简易shell完整实现 二、理解linux下一切皆文件三、缓冲区1.为什么要有缓冲区2.缓冲区的刷新策略3.缓冲区的位置4.实现一个简易的C语言缓冲区5.内核缓冲区 一、重定向 1.什么是重定…

Java---类的继承

文章目录 1. 理解继承2. 继承概述3. 代码块理解4. 继承的好处与弊端5. 继承中变量的访问特点6. super关键字7. 继承中构造方法访问特点8. 继承中成员方法访问特点9. 方法重写10. 方法重写注意事项11. Java继承注意事项 1. 理解继承 2. 继承概述 1. 继承是面向对象的三大特征之一…

客观题测试-第6章图

第1关:图-客观题测试 (一) 1、无向图中一个顶点的度是指图中()。 A、通过该顶点的简单路径数 B、与该顶点相邻接的顶点数 C、与该顶点连通的顶点数 D、通过该顶点的回路数 2、以下说法正确的是(&…

spring boot 2 升级到 spring boot 3 后文件上传失败

背景 项目需要,要求升级 spring boot 2.7 到 spring boot 3.2,升级过程中发现很多不兼容问题,下面说明文件上传失败的解决方案。 问题 spring boot 2 中不需要额外的配置,直接在 Controller 中配置 MultipartFile 接收页面传的…

Linix服务器添加dns解析

Linix开通互联网域名地址出现,如下错误: 需要访问的服务器上添加dns解析 vim /etc/sysconfig/network-scripts/ifcfg-ens192 添加如下配置: DNS1202.96.134.13 重启网卡: systemctl restart network 注意如果是docker服务部署…

利用github copilot完成代码,利用正则化完成字符串中信息查找

利用正则化完成字符串中的字符拆解。 下面的代码是实现在“计算机组成原理-计科2101-123456-小明同学.docx”中提取出班级(grade),学号(id),姓名(name)。以下的代码都是github copi…

vivado时序方法检查2

TIMING-4 &#xff1a; 时钟树上的基准时钟重新定义无效 时钟树上的时钟重新定义无效。基准时钟 <clock_name> 是在时钟 <clock_name> 下游定义的 &#xff0c; 并覆盖其插入延迟和/ 或波形定义。 描述 基准时钟必须在时钟树的源时钟上定义。例如 &#xff0…

企业电子招投标系统源码之电子招投标系统建设的重点和未来趋势

功能描述 1、门户管理&#xff1a;所有用户可在门户页面查看所有的公告信息及相关的通知信息。主要板块包含&#xff1a;招标公告、非招标公告、系统通知、政策法规。 2、立项管理&#xff1a;企业用户可对需要采购的项目进行立项申请&#xff0c;并提交审批&#xff0c;查看所…

美国DMF号查询方法及网址

美国的DMF制度于1989年开始实施&#xff0c;并一直延续至今。美国DMF制度是首创&#xff0c;欧洲以及其他后续的加拿大、澳大利亚等&#xff0c;都是在仿美国的DMF制度。下面笔者就带大家来了解什么是美国DMF&#xff1f;如何快速查询美国DMF注册备案信息&#xff1f; 关于DMF的…

Spring-AOP

目录 一、引入AOP 二、核心AOP概念和术语 三、切点表达式 四、Spring实现AOP &#xff08;一&#xff09;AspectJ的支持 1 、基于注解开发 1.1 引入依赖 1.2 实现目标类 1.3 定义切面类&#xff08;日志管理&#xff09; 1.4 将目标类和切面类纳入Spring容器 1.5 开…

JFrog Artifactory—高性能软件制品管理仓库

产品概述 JFrog Artifactory是一个可扩展的通用二进制存储库管理器&#xff0c;可在整个应用程序开发和交付过程中自动管理工件和依赖项。JFrog Artifactory支持大多数开发语言&#xff0c;是整个DevOps流水线中大多数软件包、容器映像和Helm图表的单一数据源。Artifactory对元…

四.多表查询

多表查询 1.一个案例引发的多表连接1.1案例说明1.2 笛卡尔积&#xff08;或交叉连接&#xff09;的理解1.3案例分析与问题解决 2.多表查询分类讲解分类1&#xff1a;等值连接vs非等值连接分类2&#xff1a;自连接vs非自连接分类3&#xff1a;内连接vs外连接 3.SQL99语法实现多表…

TsuKing: Coordinating DNS Resolvers and Queries into Potent DoS Amplifiers

目录 笔记后续的研究方向摘要引言之前的工作。我们的研究贡献 TsuKing: Coordinating DNS Resolvers and Queries into Potent DoS Amplifiers CCS 2023 笔记 本文介绍了一种名为 TsuKing 的新型 DNS 放大攻击。与以前利用单个DNS解析器的攻击不同&#xff0c;TsuKing协调多个…

Linux-实现小型日志系统

目录 一.日志 二.实现任意个数元素求和 三.编写一个日志函数 1.设置日志等级 2.设置日志时间 3.设置日志的打印格式 4.将日志的内容输出到文件 一.日志 日志等级&#xff0c;日志时间&#xff0c;日志内容&#xff0c;文件的名称和行号 日志等级…

写论文焦虑?No,免费AI写作大师来帮你

先来看1分钟的视频&#xff0c;对于要写论文的你来说&#xff0c;绝对有所值&#xff01; 还在为写论文焦虑&#xff1f;免费AI写作大师来帮你三步搞定 第一步&#xff1a;输入关键信息 第二步&#xff1a;生成大纲 稍等片刻后&#xff0c;专业大纲生成&#xff08;由于举例&am…

Java的第二十一章:网络通信

网络程序设计基础 网络程序设计编写的是与其他计算机进行通信的程序。Java 已经将网络程序所需要的元素封装成不同的类&#xff0c;用户只要创建这些类的对象&#xff0c;使用相应的方法&#xff0c;即使不具备有关的网络支持&#xff0c;也可以编写出高质量的网络通信程序。 …

二叉树的基本概念(详解)

树的定义 树是一种非线性数据结构&#xff0c;由n&#xff08;n>1&#xff09;个节点以及n-1条边组成&#xff0c;其中有且仅有一个节点作为根节点。树的定义具有以下特点&#xff1a; 每个节点具有零个或多个子节点。除了根节点外&#xff0c;每个节点有且仅有一个父节点…

【Pytorch使用自制数据集,Dataloader】

数据集结构 话不多说&#xff0c;直接上核心代码 myDataset.py from collections import Counter from torch.utils.data import Dataset import os from PIL import Imageclass MyDataset(Dataset):"""读取自制的数据集args:- image_dir: 图片的地址- labe…

【ETL】Kettle清洗任务异常提醒,Spoon作业异常通知

清洗作业如果挂在第三方任务平台或比较多的任务&#xff0c;执行失败无法跟踪&#xff0c;需要给任务添加异常提醒&#xff0c;这里用钉钉的群消息机器人。 钉钉机器人文档 自定义机器人接入 - 钉钉开放平台 作业示例 通过请求触发告警消息