Rust之错误处理

在Rust中,将错误分为两种,可恢复错误和不可恢复错误。所谓可恢复错误就是指类似于文件未找到这类错误,一般需要将它们报告给用户并再次尝试进行操作,而不可恢复错误往往就是Bug,需要停止程序的运行。

1、不可恢复错误与panic!:

当代码中出现没有预料到的错误时,Rust提供了一个特殊的宏panoc!,程序会在panic!宏执行时打印一段错误提示信息,展开并清理当前的调用栈,然后退出程序的执行。
当panic发生时,程序会默认开始栈展开。这意味着Rust会沿着调用栈的反向顺序遍历所有调用函数,并依次清理这些函数中的数据。但是为了支持这种遍历和清理操作,我们需要在二进制中存储许多额外信息。

2、可恢复错误与Result:

在程序的调试中,有些错误没有严重到需要停止整个程序的运行,例如尝试打开一个文件,而文件不存在的情况。这种情况可以使用Result类型来处理。在Result枚举中,定义了两个变体——OK和Err。示例:

enum Result<T,E>{OK(T),Err(E),
}

这里的T和E都是泛型,T代表了OK变体中包含的值的类型,该变体中的值会在执行成功时返回;E代表了Err变体中包含的错误类型,该变体会在执行失败时返回。

(1)、匹配不同的错误:

由于在编程时,会遇到不同的错误,那么就可以根据错误的种类来执行不同的操作。示例:

use std::fs::File;
use std::io::ErrorKind;
fn main() {let f = File::open("hello.txt");let f = match f {Ok(file) => file,Err(error) => match error.kind() {ErrorKind::NotFound => match File::create("hello.txt") {Ok(fc) => fc,Err(e) => panic!("Tried to create file but there was a problem:{:?}", e),},other_error => panic!("There was a problem opening the file: {:?}",other_error),},};
}

File::open返回的Err变体中的错误值类型,是定义在某个标准库中的结构体类型:io::Error。这个结构体拥有一个被称作kind的方法,可以通过调用它来获得 io::ErrorKind 值。这个io::ErrorKind枚举是由标准库提供的,它的变体被用于描述io操作所可能导致的不同错误。这里使用的变体是ErrorKind::NotFound,它用于说明我们尝试打开的文件不存在。所以,我们不但对变量f使用了match表达式,还在内部对error.kind()使用了match表达式。

(2)、失败时触发panic的快捷方式:unwrap和expect:

虽然使用match运行得很不错,但使用它所编写出来的代码可能会显得有些冗长,且无法较好地表明其意图。类型Result<T, E>本身也定义了许多辅助方法来应对各式各样的任务。当Result的返回值是Ok变体时,unwrap就会返回Ok内部的值。而当Result的返回值是Err变体时,unwrap则会替我们调用panic! 宏。示例:

use std::fs::File;
fn main() {let f = File::open("hello.txt").unwrap();
}

还有另外一个被称作expect的方法,它允许我们在unwrap的基础上指定panic! 所附带的错误提示信息。使用expect并附带上一段清晰的错误提示信息可以阐明你的意图,并使你更容易追踪到panic的起源。示例:

use std::fs::File;
fn main() {let f = File::open("hello.txt").expect("Failed to open hello.txt");
}

使用expect所实现的功能与unwrap完全一样:要么返回指定文件句柄,要么触发panic! 宏调用。唯一的区别在于,expect触发panic! 时会将传入的参数字符串作为错误提示信息输出,而unwrap触发的panic! 则只会携带一段简短的默认信息。

(3)、传播错误:

编写的函数中包含了一些可能会执行失败的调用时,除了可以在函数中处理这个错误,还可以将这个错误返回给调用者,让他们决定应该如何做进一步处理。这个过程也被称作传播错误,在调用代码时它给了用户更多的控制能力。与编写代码时的上下文环境相比,调用者可能会拥有更多的信息和逻辑来决定应该如何处理错误。
传播错误的模式在Rust编程中非常常见,所以Rust专门提供了一个问号运算符(?)来简化它的语法。示例:

use std::io;
use std::io::Read;
use std::fs::File;
fn read_username_from_file() -> Result<String, io::Error> {let mut f = File::open("hello.txt")?;let mut s = String::new();f.read_to_string(&mut s)?;Ok(s)
}

通过将放置于Result值之后,我们实现了与使用match表达式来处理Result时一样的功能。假如这个Result的值是Ok,那么包含在Ok中的值就会作为这个表达式的结果返回并继续执行程序。假如值是Err,那么这个值就会作为整个程序的结果返回,如同使用了return一样将错误传播给调用者。
match表达式与运算符的一个区别:被运算符所接收的错误值会隐式地被from函数处理,这个函数定义于标准库的From trait中,用于在错误类型之间进行转换。当运算符调用from函数时,它就开始尝试将传入的错误类型转换为当前函数的返回错误类型。当一个函数拥有不同的失败原因,却使用了统一的错误返回类型来同时进行表达时,这个功能会十分有用。只要每个错误类型都实现了转换为返回错误类型的from函数,?运算符就会自动处理所有的转换过程。
注:?运算符只能被用于返回Result的函数。

3、要不要使用panic!:

什么时候应该使用panic!,而什么时候又应该返回Result呢?代码一旦发生panic,就再也没有恢复的可能了。只要你认为自己可以代替调用者决定某种情形是不可恢复的,那么就可以使用panic!,而不用考虑错误是否存在可以恢复的机会。当你选择返回一个Result值时,你就将这种选择权交给了调用者。调用者可以根据自己的实际情况来决定是否要尝试进行恢复,或者干脆认为Err是不可恢复的,并使用panic! 来将可恢复错误转变为不可恢复错误。因此,我们会在定义一个可能失败的函数时优先考虑使用Result方案。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/19626.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Elasticsearch 全文检索 分词检索-Elasticsearch文章四

文章目录 官方文档地址refercence文档全文搜索体系match简单查询match 多词/分词单字段分词match多个词的逻辑控制match的匹配精度match_pharse_prefix分词前缀方式match_bool_prefixmulti_match多字段匹配 query string类型Interval类型DSL查询之Term详解聚合查询之Bucket聚合…

Git reset、revert用法

reset reset是删除之前的提交记录&#xff0c;所有的提交点都会被清除&#xff0c;我们看下执行前后的git log区别 D:\workspace\android>git log commit 87c1277a57544c53c603b04110e3dde100da8f57 (HEAD -> develop_main) Author: test <test.com> Date: Wed…

图论-简明导读

计算机图论是计算机科学中的一个重要分支&#xff0c;它主要研究图的性质和结构&#xff0c;以及如何在计算机上有效地存储、处理和操作这些图。本文将总结计算机图论的核心知识点。 一、基本概念 计算机图论中的基本概念包括图、节点、边等。图是由节点和边构成的数据结构&am…

maven中的properties标签

在maven构建项目的时候经常遇到如下所示的标签配置&#xff1a; <dependency><groupId>org.springframework</groupId><artifactId>spring-core</artifactId> <version>4.2.6</version></dependency><dependency><gr…

P3373 【模板】线段树 2

题目 思路 作为线段树模板题&#xff0c;这题主要考查了对lazytag以及先乘后加的使用&#xff0c; 线段树详解 因为是模板&#xff0c;所以这里证明略 代码 #include<bits/stdc.h> using namespace std; #define int long long const int maxn1e55; int n,m,p; int a[…

汽车后视镜反射率测定仪

汽车后视镜位于汽车头部的左右两侧&#xff0c;顶部以及汽车内部的前方。汽车后视镜反映汽车正后方视野、两侧视野和汽车前端区域视野&#xff0c;以便驾驶员可以间接看清楚这些位置的情况&#xff0c;它起着“第二只眼睛”的作用&#xff0c;扩大了驾驶者的视野范围&#xff0…

华为数通HCIA-ARP(地址解析协议)详细解析

地址解析协议 (ARP) ARP &#xff08;Address Resolution Protocol&#xff09;地址解析协议&#xff1a; 根据已知的IP地址解析获得其对应的MAC地址。 ARP&#xff08;Address Resolution Protocol&#xff0c;地址解析协议&#xff09;是根据IP地址获取数据链路层地址的一个…

【Ubuntu 18.04 搭建 DHCP 服务】

参考Ubuntu官方文档&#xff1a;https://ubuntu.com/server/docs/how-to-install-and-configure-isc-dhcp-server dhcpd.conf 手册页 配置&#xff1a;https://maas.io/docs/about-dhcp 实验环境规划 Ubuntu 18.04&#xff08;172.16.65.128/24&#xff09;dhcp服务端Ubuntu…

微信小程序使用editor富文本编辑器 以及回显 全屏弹窗的模式

<!--富文本接收的位置--><view class"white-box"><view class"title"><view class"yellow-fence"></view><view class"v1">教研记录</view></view><view class"add-btn"…

从零开始学python(十二)如何成为一名优秀的爬虫工程师

前言 回顾之前讲述了python语法编程 必修入门基础和网络编程&#xff0c;多线程/多进程/协程等方面的内容&#xff0c;后续讲到了数据库编程篇MySQL&#xff0c;Redis&#xff0c;MongoDB篇&#xff0c;和机器学习&#xff0c;全栈开发&#xff0c;数据分析前面没看的也不用往…

SonarQube入门 - 搭建本地环境

一、SonarQube是什么&#xff1f; SonarQube是一种自我管理的自动代码审查工具&#xff0c;可以系统地帮助您交付干净的代码。作为我们Sonar 解决方案的核心元素 &#xff0c;SonarQube 集成到您现有的工作流程中并检测代码中的问题&#xff0c;以帮助您对项目执行持续的代码检…

Meta-Transformer 多模态学习的统一框架

Meta-Transformer是一个用于多模态学习的新框架&#xff0c;用来处理和关联来自多种模态的信息&#xff0c;如自然语言、图像、点云、音频、视频、时间序列和表格数据&#xff0c;虽然各种数据之间存在固有的差距&#xff0c;但是Meta-Transformer利用冻结编码器从共享标记空间…

vue指令-v-text和v-html

vue指令-v-text和v-html 1、目标2、语法 1、目标 更新DOM对象的innerText/innerHTML 2、语法 v-text“Vue数据变量" v-html“Vue数据变量"注意&#xff1a;会覆盖插值表达式 示例&#xff1a; <template><div id"app"><div><p v…

文本NLP噪音预处理

最近总结修改了下预处理方法&#xff0c;记录下 首先download需要的依赖 pip install pyenchantpip install nltk pyenchant 是用来检测拼写正确的&#xff0c;如果你的文本里面可能包含非正确拼写的单词&#xff0c;那就忽略它&#xff0c;nltk用来做分词的。 python -m nlt…

Linux lvs负载均衡

LVS 介绍&#xff1a; Linux Virtual Server&#xff08;LVS&#xff09;是一个基于Linux内核的开源软件项目&#xff0c;用于构建高性能、高可用性的服务器群集。LVS通过将客户端请求分发到一组后端服务器上的不同节点来实现负载均衡&#xff0c;从而提高系统的可扩展性和可…

如何选用一套靠谱的CMS?

在如今互联网快速发展的时代&#xff0c;拥有一套靠谱的内容管理系统&#xff08;CMS&#xff09;对于网站和应用的成功至关重要。ModStart是一款基于Laravel的模块化快速开发框架&#xff0c;让我来向您介绍为何选择ModStart作为您的理想CMS解决方案。 全模块化开发&#xff0…

01-1 搭建 pytorch 虚拟环境

pytorch 管网&#xff1a;PyTorch 一 进入 Anaconda 二 创建虚拟环境 conda create -n pytorch python3.9注意要注意断 VPN切换镜像&#xff1a; 移除原来的镜像 # 查看当前配置 conda config --show channels conda config --show-sources# 移除之前的镜像 conda config --…

量化:numpy基础

文章目录 ndarray创建array创建顺序数组改变数据类型nan筛选元素去重重塑 ndarray numpy最重要的一个特点是其N维数组对象ndarry&#xff0c;它是一系列同类型数据的集合 创建array ndarry的创建方式如下&#xff1a; numpy.array(object, dtype None, copy True, order …

c语言——计算两个正整数的最大公倍数

//计算两个正整数的最大公倍数 //例如40和60的最大公约数为20. //计算两个正整数的最大公倍数 //例如40和60的最大公约数为20. #include<stdio.h> int main() {int a,b,temp,i;printf("Input a & b:");scanf("%d%d",&a,&b);if(a<b){…

Go -- 测试 and 项目实战

没有后端基础&#xff0c;学起来真是费劲&#xff0c;所以打算速刷一下&#xff0c;代码跟着敲一遍&#xff0c;有个印象&#xff0c;大项目肯定也做不了了&#xff0c;先把该学的学了&#xff0c;有空就跟点单体项目&#xff0c;还有该看的书.... 目录 &#x1f34c;单元测试…