自定义类型:结构体、联合、枚举

目录

一、⾃定义类型:结构体

1.结构体类型

1. 1结构体类型的声明

       结构体变量的创建和初始化

1.2 结构的特殊声明

1.3 结构的自引用

2. 结构体内存对齐

   ①:对齐规则

  ②:offsetof函数

   ③:为什么存在内存对⻬?

④ 修改默认对⻬数

3. 结构体传参

4. 结构体实现位段

  ①  位段

  ②  位段的内存分配

  ③  位段的跨平台问

⑤ 位段的应⽤与使⽤的注意事项

二、⾃定义类型:联合

1. 联合体类型的声明

2. 联合体的特点

​编辑

3. 相同成员的结构体和联合体对⽐

4. 联合体⼤⼩的计算

5. 联合的⼀个练习

三、自定义类型:枚举类型

1. 枚举类型的声明


一、⾃定义类型:结构体

1.结构体类型

1. 1结构体类型的声明

struct tag
{member-list;
}variable-list;

例如描述⼀个学⽣:

struct Stu
{char name[20];//名字int age;//年龄char sex[5];//性别char id[20];//学号
}; //分号不能丢

       结构体变量的创建和初始化

#include <stdio.h>
struct Stu
{char name[20];//名字int age;//年龄char sex[5];//性别char id[20];//学号
};
int main()
{//按照结构体成员的顺序初始化struct Stu s = { "张三", 20, "男", "20230818001" };printf("name: %s\n", s.name);printf("age : %d\n", s.age);printf("sex : %s\n", s.sex);printf("id : %s\n", s.id);//按照指定的顺序初始化struct Stu s2 = { .age = 18, .name = "lisi", .id = "20230818002", .sex = "⼥printf("name: %s\n", s2.name);printf("age : %d\n", s2.age);printf("sex : %s\n", s2.sex);printf("id : %s\n", s2.id);return 0;
}

或者我们打印的时候,

按照 :printf("%s %d %s %s\n", s1.name,sl.age, s1.sex,s1.id);

1.2 结构的特殊声明

在声明结构的时候,可以不完全的声明。

⽐如: 匿名结构体类型(//匿名结构体类型       只能使用一次)

//匿名结构体类型
struct
{int a;char b;float c;
}x;struct
{int a;char b;float c;
}a[20], *p;

上⾯的两个结构在声明的时候省略掉了结构体标签(tag)

// 在上⾯代码的基础上,下⾯的代码合法吗?
p = &x;
如:
int main()
{
p = &x;//?
return 0;
}

程序运行,不可以;会报警,编译器认为两种不同、

警告:
编译器会把上⾯的两个声明当成完全不同的两个类型,所以是⾮法的。
匿名的结构体类型,如果没有对结构体类型重命名的话,基本上只能使⽤⼀次。

1.3 结构的自引用

在结构中包含⼀个类型为该结构本⾝的成员是不可以的。

链表的解释图:

⽐如,定义⼀个链表的节点:
struct Node
{int data;;//存放数据struct Node next;
};

这样是不正确的,因为⼀个结构体中再包含⼀个同类型的结构体变量,这样结构体变量的⼤⼩就会⽆穷的大,是不合理的。

正确的自引用方式
struct Node
{ 
int data;//存放数据struct Node* next;//存放写一个节点的地址
};

在结构体⾃引⽤使⽤的过程中,夹杂了 typedef 对匿名结构体类型重命名,也容易引⼊问题,看看下⾯的代码,
接下来的代码是不行的
typedef struct
{int data;Node* next;//Node先用了,但是重命名在他之后,并在这一步并没有重新完成重命名
}Node;

Node先用了,但是重命名在他之后,在这一步并没有重新完成重命名

解决⽅案如下:定义结构体不要使⽤匿名结构体了
typedef struct Node
{int data;struct Node* next;
}Node;

2. 结构体内存对齐

   ①:对齐规则

⾸先得掌握结构体的对⻬规则:
1. 结构体的第⼀个成员对⻬到和结构体变量起始位置偏移量为0的地址处
2. 其他成员变量要对⻬到某个数字(对⻬数)的整数倍的地址处。
对⻬数 = 编译器默认的⼀个对⻬数 与 该成员变量⼤⼩的较⼩值。
- VS 中默认的值为 8
- Linux中 gcc 没有默认对⻬数,对⻬数就是成员⾃⾝的⼤⼩
3. 结构体总⼤⼩为最⼤对⻬数(结构体中每个成员变量都有⼀个对⻬数,所有对⻬数中最⼤的)的 整数倍。
4. 如果嵌套了结构体的情况,嵌套的结构体成员对⻬到⾃⼰的成员中最⼤对⻬数的整数倍处,结构 体的整体⼤⼩就是所有最⼤对⻬数(含嵌套结构体中成员的对⻬数)的整数倍。
//练习1
struct S1
{char c1;int i;char c2;
};
printf("%d\n", sizeof(struct S1));//练习2
struct S2
{char c1;char c2;int i;
};
printf("%d\n", sizeof(struct S2));

//练习3
struct S3
{double d;char c;int i;
};
printf("%d\n", sizeof(struct S3));
//练习4-结构体嵌套问题
struct S4
{char c1;struct S3 s3;double d;
};
printf("%d\n", sizeof(struct S4));


  ②:offsetof函数

//宏
//offsetof  计算结构体成员相较于起始位置的偏移量

//头文件: #include <stddef.h>

计算一下s1个成员的偏移量:

再计算一下s4各成员的偏移量:

   ③:为什么存在内存对⻬?

⼤部分的参考资料都是这样说的:

1. 平台原因 (移植原因)
不是所有的硬件平台都能访问任意地址上的任意数据的;某些硬件平台只能在某些地址处取某些特定类型的数据,否则抛出硬件异常。
2. 性能原因:
数据结构(尤其是栈)应该尽可能地在⾃然边界上对⻬。原因在于,为了访问未对⻬的内存,处理器需要作两次内存访问;⽽对⻬的内存访问仅需要⼀次访问。假设⼀个处理器总是从内存中取8个字节,则地址必须是8的倍数。如果我们能保证将所有的double类型的数据的地址都对⻬成8的倍数,那么就可以⽤⼀个内存操作来读或者写值了。否则,我们可能需要执⾏两次内存访问,因为对象可能被分放在两个8字节内存块中。
总体来说:结构体的内存对⻬是拿空间来换取时间的做法。

那在设计结构体的时候,我们既要满⾜对⻬,⼜要节省空间,如何做到:
让占⽤空间⼩的成员尽量集中在⼀起
1 //例如:
2 struct S1
3 {
4 char c1;
5 int i;
6 char c2;
7 };
8
9 struct S2
10 {
11 char c1;
12 char c2;
13 int i;
14 };

S1 S2 类型的成员⼀模⼀样,但是 S1 S2 所占空间的⼤⼩有了⼀些区别。

④ 修改默认对⻬数

#pragma 这个预处理指令,可以改变编译器的默认对⻬数。

#include <stdio.h>
#pragma pack(1)//设置默认对⻬数为1
struct S
{char c1;int i;char c2;
};
#pragma pack()//取消设置的对⻬数,还原为默认
int main()
{//输出的结果是什么?printf("%d\n", sizeof(struct S));return 0;
}

结构体在对⻬⽅式不合适的时候,我们可以⾃⼰更改默认对⻬数


3. 结构体传参

struct S
{int data[1000];int num;
};
struct S s = {{1,2,3,4}, 1000};
//结构体传参
void print1(struct S s)
{printf("%d\n", s.num);
}
//结构体地址传参
void print2(struct S* ps)
{printf("%d\n", ps->num);
}
int main()
{

print1 没有   print2 函数好
⾸选print2函数
原因:
函数传参的时候,参数是需要压栈,会有时间和空间上的系统开销。
如果传递⼀个结构体对象的时候,结构体过⼤,参数压栈的的系统开销⽐较⼤,所以会导致性能的下 降。
结论:
结构体传参的时候,要传结构体的地址


4. 结构体实现位段

位段是基于结构体的,结构体拥有实现位段的能⼒。

  ①  位段

位段的声明和结构是类似的,有两个不同
1. 位段的成员必须是 intunsigned int signed int 或char,在C99中位段成员的类型也可以选择其他类型。
2. 位段的成员名后边有⼀个冒号和⼀个数字。

⽐如:

struct A
{int _a:2;//2表示bit位为2int _b:5;//bit位有5位int _c:10;    //2+5+10+30=47   一共47个比特位int _d:30;    //打印为8字节
};
//注意  
//变量名:
//1.数字、名称、下划线
//2.开头不能为数字

注意  :
变量名:
//1.数字、名称、下划线
//2.开头不能为数字

我们打印:

printf("%d\n", sizeof(struct A));
A就是⼀个位段类型。
那位段A所占内存的⼤⼩是为8字

对比一下正常情况,不用位段:

  ②  位段的内存分配

1. 位段的成员可以是 int unsigned int signed int 或者是 char 等类型
2. 位段的空间上是按照需要以4个字节( int )或者1个字节( char 的⽅式来开辟的
3. 位段涉及很多不确定因素位段是不跨平台的,注重可移植的程序应该避免使⽤位段。

接下来的实现仅在vs情况下。

//⼀个例⼦
struct S
{char a:3;char b:4;char c:5;char d:4;
};
struct S s = {0};
s.a = 10;
s.b = 12;
s.c = 3;
s.d = 4;
//空间是如何开辟的?

我们再详细解释一下:

     

内存中的存储方式更显而易见:   

  ③  位段的跨平台问题

1. int 位段被当成有符号数还是无符号数是不确定的。
2. 位段中最⼤位的数⽬不能确定。(16位机器最⼤16,32位机器最⼤32,写成27,在16位机器会出问题。
3. 位段中的成员在内存中从左向右分配,还是从右向左分配标准尚未定义。
4. 当⼀个结构包含两个位段,第⼆个位段成员⽐较⼤,⽆法容纳于第⼀个位段剩余的位时,是舍弃剩余的位还是利⽤,这是不确定的
总结:
跟结构相⽐,位段可以达到同样的效果,并且可以很好的节省空间,但是有跨平台的问题存在。

注意:

        int - 4个字节 - 32bit        

        但是在16位的机器上
        int - 2个字节 - 16bit        

⑤ 位段的应⽤与使⽤的注意事项

应用:
下图是⽹络协议中,IP数据报的格式,我们可以看到其中很多的属性只需要⼏个bit位就能描述,这⾥使⽤位段,能够实现想要的效果,也节省了空间,这样⽹络传输的数据报⼤⼩也会较⼩⼀些,对⽹络的畅通是有帮助的。
打印"呵呵"
位段使⽤的注意事项:
位段的⼏个成员共有同⼀个字节,这样有些成员的起始位置并不是某个字节的起始位置,那么这些位置处是没有地址的。内存中每个字节分配⼀个地址,⼀个字节内部的bit位是没有地址的。
所以 不能对位段的成员使⽤&操作符 这样就不能使⽤scanf直接给位段的成员输⼊值,只能是先输⼊放在⼀个变量中,然后赋值给位段的成员。

struct A
{int _a : 2;int _b : 5;int _c : 10;int _d : 30;
};
int main()
{struct A sa = {0};scanf("%d", &sa._b);//这是错误的//正确的⽰范int b = 0;          //先初始化一个变量scanf("%d", &b);    //再赋值给它sa._b = b;          //再把这个变量赋值给它return 0;
}

二、⾃定义类型:联合

1. 联合体类型的声明

像结构体⼀样,联合体也是由⼀个或者多个成员构成,这些成员可以不同的类型。
但是编译器只为最⼤的成员分配⾜够的内存空间。联合体的特点是所有成员共⽤同⼀块内存空间。所以联合体也叫:共用体
给联合体其中⼀个成员赋值,其他成员的值也跟着变化。
#include <stdio.h>
//联合类型的声明
union Un
{char c;int i;
};
int main()
{//联合变量的定义union Un un = {0};//计算连个变量的⼤⼩printf("%d\n", sizeof(un));return 0;
}
输出的结果:
1 4

​​​​​​​

2. 联合体的特点

联合的成员是共⽤同⼀块内存空间的,这样⼀个联合变量的⼤⼩,⾄少是最⼤成员的⼤⼩(因为联合⾄少得有能⼒保存最⼤的那个成员)。
//代码1
#include <stdio.h>
//联合类型的声明
union Un
{char c;int i;
};
int main()
{//联合变量的定义union Un un = {0};// 下⾯输出的结果是⼀样的吗?printf("%p\n", &(un.i));printf("%p\n", &(un.c));printf("%p\n", &un);return 0;
}
输出的结果:
001AF85C
001AF85C
001AF85C

联合体的成员在共用同一块空间的所以: 联合体也叫共用体

​​​​​​​

//代码2
#include <stdio.h>
//联合类型的声明
union Un
{char c;int i;
};
int main()
{//联合变量的定义union Un un = {0};un.i = 0x11223344;un.c = 0x55;printf("%x\n", un.i);return 0;
}
输出的结果:
11223355
代码1输出的三个地址⼀模⼀样,代码2的输出,我们发现将i的第4个字节的内容修改为55了。
我们仔细分析就可以画出,un的内存布局图。

3. 相同成员的结构体和联合体对⽐

对⽐⼀下相同成员的结构体和联合体的内存布局情况。
结构体
struct S
{char c;int i;
};
struct S s = {0};
union Un
{char c;int i;
};
union Un un = {0};

4. 联合体⼤⼩的计算

联合的⼤⼩⾄少是最⼤成员的⼤⼩。
当最⼤成员⼤⼩不是最⼤对⻬数的整数倍的时候,就要对⻬到最⼤对⻬数的整数倍。
#include <stdio.h>
union Un1
{char c[5];int i;
};
union Un2
{short c[7];int i;
};
int main()
{//下⾯输出的结果是什么?printf("%d\n", sizeof(union Un1));//8printf("%d\n", sizeof(union Un2));//16return 0;
}

使⽤联合体是可以节省空间的,
​​​​​​​举例:
⽐如,我们要搞⼀个活动,要上线⼀个礼品兑换单,礼品兑换单中有三种商品:图书、杯⼦、衬衫。
每⼀种商品都有:库存量、价格、商品类型和商品类型相关的其他信息。
图书:书名、作者、⻚数
杯⼦:设计
衬衫:设计、可选颜⾊、可选尺⼨
那我们不耐⼼思考,直接写出⼀下结构:
struct gift_list
{//公共属性int stock_number;//库存量double price; //定价int item_type;//商品类型//特殊属性char title[20];//书名char author[20];//作者int num_pages;//⻚数char design[30];//设计int colors;//颜⾊int sizes;//尺⼨
};

上述的结构其实设计的很简单,⽤起来也⽅便,但是结构的设计中包含了所有礼品的各种属性,这样使得结构体的⼤⼩就会偏⼤,⽐较浪费内存。因为对于礼品兑换单中的商品来说,只有部分属性信息是常⽤的。
⽐如:
商品是图书,就不需要design、colors、sizes。
所以我们就可以把公共属性单独写出来,剩余属于各种商品本⾝的属性使⽤联合体起来,这样就可以介绍所需的内存空间,⼀定程度上节省了内存。
struct gift_list
{int stock_number;//库存量double price; //定价int item_type;//商品类型union{struct{char title[20];//书名char author[20];//作者int num_pages;//⻚数}book;struct{char design[30];//设计}mug;struct{char design[30];//设计int colors;//颜⾊int sizes;//尺⼨}shirt;}item;
};

5. 联合的⼀个练习

​​​​​​​

写⼀个程序,判断当前机器是⼤端?还是⼩端?
int check_sys()
{union{int i;char c;}un;un.i = 1;return un.c;//返回1是⼩端,返回0是⼤端
}

第一种方法:

第二种方法:


三、自定义类型:枚举类型

1. 枚举类型的声明

​​​​​​​

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/190660.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

基于算能的国产AI边缘计算盒子,8核心A53丨10.6Tops算力

边缘计算盒子 8核心A53丨10.6Tops算力 ● 算力高达10.6TOPS,单芯片最高支持8路H.264 & H.265的实时解码能力。 ● 可扩展4G/5G/WIFI无线网络方式&#xff0c;为边缘化业务部署提供便利。 ● 支持RS232/RS485/USB2.0/USB3.0/HDMI OUT/双千兆以太网等。 ● 低功耗设计&a…

hls实现播放m3u8视频将视频流进行切片 HLS.js简介

github官网GitHub - video-dev/hls.js: HLS.js is a JavaScript library that plays HLS in browsers with support for MSE.HLS.js is a JavaScript library that plays HLS in browsers with support for MSE. - GitHub - video-dev/hls.js: HLS.js is a JavaScript library …

BUUCTF-WEB-刷题记录(2)

[网鼎杯 2018]Fakebook 注册一个账户&#xff0c;进去之后查看源代码&#xff0c;感觉存在注入点 是数字型注入&#xff0c;payload&#xff1a; 1%20and(false) 1%20and(true)判断列数 1 order by 5改为4的时候则页面正常 判断显示位&#xff0c;可以看见第二列存在数据回…

智能优化算法应用:基于乌燕鸥算法无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用&#xff1a;基于乌燕鸥算法无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用&#xff1a;基于乌燕鸥算法无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.乌燕鸥算法4.实验参数设定5.算法结果6.参考文献7.…

基于STC12C5A60S2系列1T 8051单片机的液晶显示器LCD1602显示功能菜单应用

基于STC12C5A60S2系列1T 8051单片机的液晶显示器LCD1602显示功能菜单应用 STC12C5A60S2系列1T 8051单片机管脚图STC12C5A60S2系列1T 8051单片机I/O口各种不同工作模式及配置STC12C5A60S2系列1T 8051单片机I/O口各种不同工作模式介绍液晶显示器LCD1602简单介绍IIC通信简单介绍掉…

Lattice-Based Blind Signatures: Short, Efficient, and Round-Optimal

目录 摘要引言 Lattice-Based Blind Signatures: Short, Efficient, and Round-Optimal CCS 2023 摘要 我们提出了一种基于随机预言机启发式和标准格问题&#xff08;环/模块SIS/LWE和NTRU&#xff09;的2轮盲签名协议&#xff0c;签名大小为22KB。该协议是全面优化的&#xf…

企业网盘在医疗行业资料管理中的应用与优势

随着企业网盘的广泛应用&#xff0c;医疗行业正逐渐实现资料安全存储和智能化管理。海量应用的推动下&#xff0c;医院管理正朝着线上化、智能化发展迈进。然而&#xff0c;医疗行业仍面临着诸多挑战。 医疗行业的痛点在于病例、档案、药品资料繁多且保存周期长。这些资料的整理…

服务注册发现 配置中心 springcloud alibaba nacos

文章目录 0100 系统环境0200 nacos安装0201 下载0202 安装 0300 工程说明0301 结构说明0302 运行效果 0400 代码说明0401 服务提供者&#xff08;Provider Service&#xff09;0402 服务消费者&#xff08;Consumer Service&#xff09;服务提供者SDK&#xff08;Provider Serv…

Mapper文件夹在resource目录下但是网页报错找不到productMapper.xml文件的解决

报错如下&#xff1a; 我的Mapper文件夹在resourse目录下但是网页报错找不到productMapper.xml。 结构如下&#xff1a;代码如下&#xff1a;<mappers><mapper resource"com/dhu/mapper/productMapper.xml" /> </mappers> 这段代码是在mybatis-co…

5G承载网和大客户承载的演进

文章目录 移动4/5G承载网联通和电信4/5G承载网M-OTN&#xff08;Metro-optimized OTN&#xff09;&#xff0c;城域型光传送网PeOTN&#xff08;packet enhanced optical transport network&#xff09;&#xff0c;分组增强型OTN板卡增强型PeOTN集中交叉型PeOTN VC-OTN&#x…

Hdoop学习笔记(HDP)-Part.11 安装Kerberos

目录 Part.01 关于HDP Part.02 核心组件原理 Part.03 资源规划 Part.04 基础环境配置 Part.05 Yum源配置 Part.06 安装OracleJDK Part.07 安装MySQL Part.08 部署Ambari集群 Part.09 安装OpenLDAP Part.10 创建集群 Part.11 安装Kerberos Part.12 安装HDFS Part.13 安装Ranger …

ASP.NET Core 使用IIS调试出现505.24错误

最近一直再学习asp.net 相关的东西&#xff0c;主要是为前端app提供一个webapi接口。在使用iis调试程序时出现HTTP Error 500.24 - Internal Server Error错误&#xff0c;搞了好久才最终解决。 1.在项目中增加web.config配置文件 2.将配置文件改为如下内容 <?xml version…

C++模版

文章目录 C模版1、泛型编程2、函数模版2.1、函数模版概念2.2、函数模版格式2.3、函数模版原理2.4、函数模版的实例化2.5、模板参数的匹配原则 3、类模版3.1、类模版概念3.2、类模版格式3.3、类模板的实例化 C模版 1、泛型编程 泛型编程&#xff08;Generic Programming&#x…

003、应用程序框架-UIAbility

之——UIAbility 目录 之——UIAbility 杂谈 正文 1.UIAbility 2.基本使用 2.1 创建Ability工程 2.2 添加基础功能 2.3 新建页面 2.4 页面间的跳转 3.生命周期 总结 杂谈 UIAbility&#xff0c;其中的页面创建、页面间的跳转、数据传递、生命周期。 正文 1.UIAbil…

【数据结构】环形队列

环形队列 1. 定义 环形队列就是将队列在逻辑上看作环形结构、物理上仍是数组形式存储的一种数据结构。 其实现主要分为两种情况&#xff1a; 浪费空间法记录空间法 2. 实现 实现要考虑的是成员变量 2.1 记录空间法 使用used标识当前存储了多少元素&#xff0c;如果为空&a…

基于ASP.NET MVC技术的图书管理系统的设计与实现

基于ASP.NET MVC技术的图书管理系统的设计与实现 摘要&#xff1a;图书管理系统是一套高新科学技术和图书知识信息以及传统历史文化完美结合的体现。它改变了传统图书收藏的静态书本式图书服务特征&#xff0c;实现了多媒体存取、远程网络传输、智能化检索、跨库无缝链接、创造…

type-c充电器输出电压5V9V12V15V20V PD协议诱骗快充应用方案

Type-C接口的PD充电器&#xff08;如iPhone的20W充电器&#xff09;默认是没有电压输出的&#xff0c;想要让Type-C的充电器输出5V、9V、12V、15V、20V&#xff0c;只需要在产品上使用一颗快充取电芯片XSP08即可。 工作原理&#xff1a; 各类小家电产品如平板电脑、智能穿戴产…

什么是Ros(二)- 结构和通讯概述

目录 1.架构 2.通讯 参考文献 上接&#xff1a;什么是Ros&#xff08;一&#xff09;-CSDN博客 1.架构 共三层&#xff1a;OS 层&#xff0c;中间层&#xff0c;应用层。 OS 层&#xff1a;OS 层是操作系统层也就是我们现在使用的ubuntu&#xff08;linux&#xff09;&…

win10下在Qt中使用VTK(安装VS2017+安装QT5.9.9+编译配置VTK8.2.0)

目录 前言一、安装Visual Studio20171&#xff09;官网下载可执行的安装程序2&#xff09;安装3&#xff09;启动 二、安装Qt 5.9.91&#xff09;下载可执行的安装程序2&#xff09;安装3&#xff09;配置环境变量 三、安装Cmake1&#xff09;下载可执行的安装程序2&#xff09…

【深度优先】LeetCode1932:合并多棵二叉搜索树

作者推荐 动态规划LeetCode2552&#xff1a;优化了6版的1324模式 题目 给你 n 个 二叉搜索树的根节点 &#xff0c;存储在数组 trees 中&#xff08;下标从 0 开始&#xff09;&#xff0c;对应 n 棵不同的二叉搜索树。trees 中的每棵二叉搜索树 最多有 3 个节点 &#xff0…