Kubernetes(K8s)Pod控制器详解-06

Pod控制器详解

Pod控制器介绍
Pod是kubernetes的最小管理单元,在kubernetes中,按照pod的创建方式可以将其分为两类:

自主式pod:kubernetes直接创建出来的Pod,这种pod删除后就没有了,也不会重建
控制器创建的pod:kubernetes通过控制器创建的pod,这种pod删除了之后还会自动重建
什么是Pod控制器

Pod控制器是管理pod的中间层,使用Pod控制器之后,只需要告诉Pod控制器,想要多少个什么样的Pod就可以了,它会创建出满足条件的Pod并确保每一个Pod资源处于用户期望的目标状态。如果Pod资源在运行中出现故障,它会基于指定策略重新编排Pod。

在kubernetes中,有很多类型的pod控制器,每种都有自己的适合的场景,常见的有下面这些:

ReplicationController:比较原始的pod控制器,已经被废弃,由ReplicaSet替代
ReplicaSet:保证副本数量一直维持在期望值,并支持pod数量扩缩容,镜像版本升级
Deployment:通过控制ReplicaSet来控制Pod,并支持滚动升级、回退版本
Horizontal Pod Autoscaler:可以根据集群负载自动水平调整Pod的数量,实现削峰填谷
DaemonSet:在集群中的指定Node上运行且仅运行一个副本,一般用于守护进程类的任务
Job:它创建出来的pod只要完成任务就立即退出,不需要重启或重建,用于执行一次性任务
Cronjob:它创建的Pod负责周期性任务控制,不需要持续后台运行
StatefulSet:管理有状态应用
ReplicaSet(RS)
ReplicaSet的主要作用是保证一定数量的pod正常运行,它会持续监听这些Pod的运行状态,一旦Pod发生故障,就会重启或重建。同时它还支持对pod数量的扩缩容和镜像版本的升降级。

img

ReplicaSet的资源清单文件:

apiVersion: apps/v1 # 版本号
kind: ReplicaSet # 类型       
metadata: # 元数据name: # rs名称 namespace: # 所属命名空间 labels: #标签controller: rs
spec: # 详情描述replicas: 3 # 副本数量selector: # 选择器,通过它指定该控制器管理哪些podmatchLabels:      # Labels匹配规则app: nginx-podmatchExpressions: # Expressions匹配规则- {key: app, operator: In, values: [nginx-pod]}template: # 模板,当副本数量不足时,会根据下面的模板创建pod副本metadata:labels:app: nginx-podspec:containers:- name: nginximage: nginx:1.17.1ports:- containerPort: 80

在这里面,需要新了解的配置项就是spec下面几个选项:

replicas:指定副本数量,其实就是当前rs创建出来的pod的数量,默认为1

selector:选择器,它的作用是建立pod控制器和pod之间的关联关系,采用的Label Selector机制

在pod模板上定义label,在控制器上定义选择器,就可以表明当前控制器能管理哪些pod了

template:模板,就是当前控制器创建pod所使用的模板板,里面其实就是前一章学过的pod的定义

创建ReplicaSet

创建pc-replicaset.yaml文件,内容如下:

apiVersion: apps/v1
kind: ReplicaSet   
metadata:name: pc-replicasetnamespace: dev
spec:replicas: 3selector: matchLabels:app: nginx-podtemplate:metadata:labels:app: nginx-podspec:containers:- name: nginximage: nginx:1.17.1
#创建rs
[root@k8s-master01 ~]# kubectl create -f pc-replicaset.yaml
replicaset.apps/pc-replicaset created#查看rs
#DESIRED:期望副本数量  
#CURRENT:当前副本数量  
#READY:已经准备好提供服务的副本数量
[root@k8s-master01 ~]# kubectl get rs pc-replicaset -n dev -o wide
NAME          DESIRED   CURRENT READY AGE   CONTAINERS   IMAGES             SELECTOR
pc-replicaset 3         3       3     22s   nginx        nginx:1.17.1       app=nginx-pod#查看当前控制器创建出来的pod
#这里发现控制器创建出来的pod的名称是在控制器名称后面拼接了-xxxxx随机码
[root@k8s-master01 ~]# kubectl get pod -n dev
NAME                          READY   STATUS    RESTARTS   AGE
pc-replicaset-6vmvt   1/1     Running   0          54s
pc-replicaset-fmb8f   1/1     Running   0          54s
pc-replicaset-snrk2   1/1     Running   0          54s

扩缩容

#编辑rs的副本数量,修改spec:replicas: 6即可
[root@k8s-master01 ~]# kubectl edit rs pc-replicaset -n dev
replicaset.apps/pc-replicaset edited#查看pod
[root@k8s-master01 ~]# kubectl get pods -n dev
NAME                          READY   STATUS    RESTARTS   AGE
pc-replicaset-6vmvt   1/1     Running   0          114m
pc-replicaset-cftnp   1/1     Running   0          10s
pc-replicaset-fjlm6   1/1     Running   0          10s
pc-replicaset-fmb8f   1/1     Running   0          114m
pc-replicaset-s2whj   1/1     Running   0          10s
pc-replicaset-snrk2   1/1     Running   0          114m#当然也可以直接使用命令实现
#使用scale命令实现扩缩容, 后面--replicas=n直接指定目标数量即可
[root@k8s-master01 ~]# kubectl scale rs pc-replicaset --replicas=2 -n dev
replicaset.apps/pc-replicaset scaled#命令运行完毕,立即查看,发现已经有4个开始准备退出了
[root@k8s-master01 ~]# kubectl get pods -n dev
NAME                       READY   STATUS        RESTARTS   AGE
pc-replicaset-6vmvt   0/1     Terminating   0          118m
pc-replicaset-cftnp   0/1     Terminating   0          4m17s
pc-replicaset-fjlm6   0/1     Terminating   0          4m17s
pc-replicaset-fmb8f   1/1     Running       0          118m
pc-replicaset-s2whj   0/1     Terminating   0          4m17s
pc-replicaset-snrk2   1/1     Running       0          118m#稍等片刻,就只剩下2个了
[root@k8s-master01 ~]# kubectl get pods -n dev
NAME                       READY   STATUS    RESTARTS   AGE
pc-replicaset-fmb8f   1/1     Running   0          119m
pc-replicaset-snrk2   1/1     Running   0          119m

镜像升级

#编辑rs的容器镜像 - image: nginx:1.17.2
[root@k8s-master01 ~]# kubectl edit rs pc-replicaset -n dev
replicaset.apps/pc-replicaset edited#再次查看,发现镜像版本已经变更了
[root@k8s-master01 ~]# kubectl get rs -n dev -o wide
NAME                DESIRED  CURRENT   READY   AGE    CONTAINERS   IMAGES        ...
pc-replicaset       2        2         2       140m   nginx         nginx:1.17.2  ...#同样的道理,也可以使用命令完成这个工作
#kubectl set image rs rs名称 容器=镜像版本 -n namespace
[root@k8s-master01 ~]# kubectl set image rs pc-replicaset nginx=nginx:1.17.1  -n dev
replicaset.apps/pc-replicaset image updated#再次查看,发现镜像版本已经变更了
[root@k8s-master01 ~]# kubectl get rs -n dev -o wide
NAME                 DESIRED  CURRENT   READY   AGE    CONTAINERS   IMAGES            ...
pc-replicaset        2        2         2       145m   nginx        nginx:1.17.1 ... 

删除ReplicaSet

#使用kubectl delete命令会删除此RS以及它管理的Pod
#在kubernetes删除RS前,会将RS的replicasclear调整为0,等待所有的Pod被删除后,在执行RS对象的删除
[root@k8s-master01 ~]# kubectl delete rs pc-replicaset -n dev
replicaset.apps "pc-replicaset" deleted
[root@k8s-master01 ~]# kubectl get pod -n dev -o wide
No resources found in dev namespace.#如果希望仅仅删除RS对象(保留Pod),可以使用kubectl delete命令时添加--cascade=false选项(不推荐)。
[root@k8s-master01 ~]# kubectl delete rs pc-replicaset -n dev --cascade=false
replicaset.apps "pc-replicaset" deleted
[root@k8s-master01 ~]# kubectl get pods -n dev
NAME                  READY   STATUS    RESTARTS   AGE
pc-replicaset-cl82j   1/1     Running   0          75s
pc-replicaset-dslhb   1/1     Running   0          75s#也可以使用yaml直接删除(推荐)
[root@k8s-master01 ~]# kubectl delete -f pc-replicaset.yaml
replicaset.apps "pc-replicaset" deleted

Deployment(Deploy)
为了更好的解决服务编排的问题,kubernetes在V1.2版本开始,引入了Deployment控制器。值得一提的是,这种控制器并不直接管理pod,而是通过管理ReplicaSet来简介管理Pod,即:Deployment管理ReplicaSet,ReplicaSet管理Pod。所以Deployment比ReplicaSet功能更加强大。

为了更好的解决服务编排的问题,kubernetes在V1.2版本开始,引入了Deployment控制器。值得一提的是,这种控制器并不直接管理pod,而是通过管理ReplicaSet来简介管理Pod,即:Deployment管理ReplicaSet,ReplicaSet管理Pod。所以Deployment比ReplicaSet功能更加强大。

img

Deployment主要功能有下面几个:

支持ReplicaSet的所有功能
支持发布的停止、继续
支持滚动升级和回滚版本
Deployment的资源清单文件:

apiVersion: apps/v1 # 版本号
kind: Deployment # 类型       
metadata: # 元数据name: # rs名称 namespace: # 所属命名空间 labels: #标签controller: deploy
spec: # 详情描述replicas: 3 # 副本数量revisionHistoryLimit: 3 # 保留历史版本paused: false # 暂停部署,默认是falseprogressDeadlineSeconds: 600 # 部署超时时间(s),默认是600strategy: # 策略type: RollingUpdate # 滚动更新策略rollingUpdate: # 滚动更新违规词汇: 30% # 最大额外可以存在的副本数,可以为百分比,也可以为整数maxUnavailable: 30% # 最大不可用状态的 Pod 的最大值,可以为百分比,也可以为整数selector: # 选择器,通过它指定该控制器管理哪些podmatchLabels:      # Labels匹配规则app: nginx-podmatchExpressions: # Expressions匹配规则- {key: app, operator: In, values: [nginx-pod]}template: # 模板,当副本数量不足时,会根据下面的模板创建pod副本metadata:labels:app: nginx-podspec:containers:- name: nginximage: nginx:1.17.1ports:- containerPort: 80

创建deployment
创建pc-deployment.yaml,内容如下:

apiVersion: apps/v1
kind: Deployment      
metadata:name: pc-deploymentnamespace: dev
spec: replicas: 3selector:matchLabels:app: nginx-podtemplate:metadata:labels:app: nginx-podspec:containers:- name: nginximage: nginx:1.17.1

扩缩容

#变更副本数量为5个
[root@k8s-master01 ~]# kubectl scale deploy pc-deployment --replicas=5  -n dev
deployment.apps/pc-deployment scaled#查看deployment
[root@k8s-master01 ~]# kubectl get deploy pc-deployment -n dev
NAME            READY   UP-TO-DATE   AVAILABLE   AGE
pc-deployment   5/5     5            5           2m#查看pod
[root@k8s-master01 ~]#  kubectl get pods -n dev
NAME                             READY   STATUS    RESTARTS   AGE
pc-deployment-6696798b78-d2c8n   1/1     Running   0          4m19s
pc-deployment-6696798b78-jxmdq   1/1     Running   0          94s
pc-deployment-6696798b78-mktqv   1/1     Running   0          93s
pc-deployment-6696798b78-smpvp   1/1     Running   0          4m19s
pc-deployment-6696798b78-wvjd8   1/1     Running   0          4m19s#编辑deployment的副本数量,修改spec:replicas: 4即可
[root@k8s-master01 ~]# kubectl edit deploy pc-deployment -n dev
deployment.apps/pc-deployment edited#查看pod
[root@k8s-master01 ~]# kubectl get pods -n dev
NAME                             READY   STATUS    RESTARTS   AGE
pc-deployment-6696798b78-d2c8n   1/1     Running   0          5m23s
pc-deployment-6696798b78-jxmdq   1/1     Running   0          2m38s
pc-deployment-6696798b78-smpvp   1/1     Running   0          5m23s
pc-deployment-6696798b78-wvjd8   1/1     Running   0          5m23s

镜像更新

deployment支持两种更新策略:重建更新和滚动更新,可以通过strategy指定策略类型,支持两个属性:

strategy:指定新的Pod替换旧的Pod的策略, 支持两个属性:
type:指定策略类型,支持两种策略
Recreate:在创建出新的Pod之前会先杀掉所有已存在的Pod
RollingUpdate:滚动更新,就是杀死一部分,就启动一部分,在更新过程中,存在两个版本Pod
rollingUpdate:当type为RollingUpdate时生效,用于为RollingUpdate设置参数,支持两个属性:
maxUnavailable:用来指定在升级过程中不可用Pod的最大数量,默认为25%。
违规词汇: 用来指定在升级过程中可以超过期望的Pod的最大数量,默认为25%。
重建更新

编辑pc-deployment.yaml,在spec节点下添加更新策略

spec:strategy: # 策略type: Recreate # 重建更新

创建deploy进行验证

#变更镜像
[root@k8s-master01 ~]# kubectl set image deployment pc-deployment nginx=nginx:1.17.2 -n dev
deployment.apps/pc-deployment image updated#观察升级过程
[root@k8s-master01 ~]#  kubectl get pods -n dev -w
NAME                             READY   STATUS    RESTARTS   AGE
pc-deployment-5d89bdfbf9-65qcw   1/1     Running   0          31s
pc-deployment-5d89bdfbf9-w5nzv   1/1     Running   0          31s
pc-deployment-5d89bdfbf9-xpt7w   1/1     Running   0          31spc-deployment-5d89bdfbf9-xpt7w   1/1     Terminating   0          41s
pc-deployment-5d89bdfbf9-65qcw   1/1     Terminating   0          41s
pc-deployment-5d89bdfbf9-w5nzv   1/1     Terminating   0          41spc-deployment-675d469f8b-grn8z   0/1     Pending       0          0s
pc-deployment-675d469f8b-hbl4v   0/1     Pending       0          0s
pc-deployment-675d469f8b-67nz2   0/1     Pending       0          0spc-deployment-675d469f8b-grn8z   0/1     ContainerCreating   0          0s
pc-deployment-675d469f8b-hbl4v   0/1     ContainerCreating   0          0s
pc-deployment-675d469f8b-67nz2   0/1     ContainerCreating   0          0spc-deployment-675d469f8b-grn8z   1/1     Running             0          1s
pc-deployment-675d469f8b-67nz2   1/1     Running             0          1s
pc-deployment-675d469f8b-hbl4v   1/1     Running             0          2s

滚动更新

编辑pc-deployment.yaml,在spec节点下添加更新策略

spec:strategy: # 策略type: RollingUpdate # 滚动更新策略rollingUpdate:违规词汇: 25% maxUnavailable: 25%

创建deploy进行验证

#变更镜像
[root@k8s-master01 ~]# kubectl set image deployment pc-deployment nginx=nginx:1.17.3 -n dev 
deployment.apps/pc-deployment image updated#观察升级过程
[root@k8s-master01 ~]# kubectl get pods -n dev -w
NAME                           READY   STATUS    RESTARTS   AGE
pc-deployment-c848d767-8rbzt   1/1     Running   0          31m
pc-deployment-c848d767-h4p68   1/1     Running   0          31m
pc-deployment-c848d767-hlmz4   1/1     Running   0          31m
pc-deployment-c848d767-rrqcn   1/1     Running   0          31mpc-deployment-966bf7f44-226rx   0/1     Pending             0          0s
pc-deployment-966bf7f44-226rx   0/1     ContainerCreating   0          0s
pc-deployment-966bf7f44-226rx   1/1     Running             0          1s
pc-deployment-c848d767-h4p68    0/1     Terminating         0          34mpc-deployment-966bf7f44-cnd44   0/1     Pending             0          0s
pc-deployment-966bf7f44-cnd44   0/1     ContainerCreating   0          0s
pc-deployment-966bf7f44-cnd44   1/1     Running             0          2s
pc-deployment-c848d767-hlmz4    0/1     Terminating         0          34mpc-deployment-966bf7f44-px48p   0/1     Pending             0          0s
pc-deployment-966bf7f44-px48p   0/1     ContainerCreating   0          0s
pc-deployment-966bf7f44-px48p   1/1     Running             0          0s
pc-deployment-c848d767-8rbzt    0/1     Terminating         0          34mpc-deployment-966bf7f44-dkmqp   0/1     Pending             0          0s
pc-deployment-966bf7f44-dkmqp   0/1     ContainerCreating   0          0s
pc-deployment-966bf7f44-dkmqp   1/1     Running             0          2s
pc-deployment-c848d767-rrqcn    0/1     Terminating         0          34m#至此,新版本的pod创建完毕,就版本的pod销毁完毕
#中间过程是滚动进行的,也就是边销毁边创建

滚动更新的过程:

img

镜像更新中rs的变化

#查看rs,发现原来的rs的依旧存在,只是pod数量变为了0,而后又新产生了一个rs,pod数量为4
#其实这就是deployment能够进行版本回退的奥妙所在,后面会详细解释
[root@k8s-master01 ~]# kubectl get rs -n dev
NAME                       DESIRED   CURRENT   READY   AGE
pc-deployment-6696798b78   0         0         0       7m37s
pc-deployment-6696798b11   0         0         0       5m37s
pc-deployment-c848d76789   4         4         4       72s
6.3.3 版本回退
deployment支持版本升级过程中的暂停、继续功能以及版本回退等诸多功能,下面具体来看.kubectl rollout: 版本升级相关功能,支持下面的选项:status 显示当前升级状态
history 显示 升级历史记录
pause 暂停版本升级过程
resume 继续已经暂停的版本升级过程
restart 重启版本升级过程
undo 回滚到上一级版本(可以使用--to-revision回滚到指定版本)
#查看当前升级版本的状态
[root@k8s-master01 ~]# kubectl rollout status deploy pc-deployment -n dev
deployment "pc-deployment" successfully rolled out#查看升级历史记录
[root@k8s-master01 ~]# kubectl rollout history deploy pc-deployment -n dev
deployment.apps/pc-deployment
REVISION  CHANGE-CAUSE
1         kubectl create --filename=pc-deployment.yaml --record=true
2         kubectl create --filename=pc-deployment.yaml --record=true
3         kubectl create --filename=pc-deployment.yaml --record=true
#可以发现有三次版本记录,说明完成过两次升级#版本回滚
#这里直接使用--to-revision=1回滚到了1版本, 如果省略这个选项,就是回退到上个版本,就是2版本
[root@k8s-master01 ~]# kubectl rollout undo deployment pc-deployment --to-revision=1 -n dev
deployment.apps/pc-deployment rolled back#查看发现,通过nginx镜像版本可以发现到了第一版
[root@k8s-master01 ~]# kubectl get deploy -n dev -o wide
NAME            READY   UP-TO-DATE   AVAILABLE   AGE   CONTAINERS   IMAGES         
pc-deployment   4/4     4            4           74m   nginx        nginx:1.17.1   #查看rs,发现第一个rs中有4个pod运行,后面两个版本的rs中pod为运行
#其实deployment之所以可是实现版本的回滚,就是通过记录下历史rs来实现的,
#一旦想回滚到哪个版本,只需要将当前版本pod数量降为0,然后将回滚版本的pod提升为目标数量就可以了
[root@k8s-master01 ~]# kubectl get rs -n dev
NAME                       DESIRED   CURRENT   READY   AGE
pc-deployment-6696798b78   4         4         4       78m
pc-deployment-966bf7f44    0         0         0       37m
pc-deployment-c848d767     0         0         0       71m

金丝雀发布
Deployment控制器支持控制更新过程中的控制,如“暂停(pause)”或“继续(resume)”更新操作。

比如有一批新的Pod资源创建完成后立即暂停更新过程,此时,仅存在一部分新版本的应用,主体部分还是旧的版本。然后,再筛选一小部分的用户请求路由到新版本的Pod应用,继续观察能否稳定地按期望的方式运行。确定没问题之后再继续完成余下的Pod资源滚动更新,否则立即回滚更新操作。这就是所谓的金丝雀发布。

#更新deployment的版本,并配置暂停deployment
[root@k8s-master01 ~]#  kubectl set image deploy pc-deployment nginx=nginx:1.17.4 -n dev && kubectl rollout pause deployment pc-deployment  -n dev
deployment.apps/pc-deployment image updated
deployment.apps/pc-deployment paused#观察更新状态
[root@k8s-master01 ~]# kubectl rollout status deploy pc-deployment -n dev 
Waiting for deployment "pc-deployment" rollout to finish: 2 out of 4 new replicas have been updated...#监控更新的过程,可以看到已经新增了一个资源,但是并未按照预期的状态去删除一个旧的资源,就是因为使用了pause暂停命令[root@k8s-master01 ~]# kubectl get rs -n dev -o wide
NAME                       DESIRED   CURRENT   READY   AGE     CONTAINERS   IMAGES         
pc-deployment-5d89bdfbf9   3         3         3       19m     nginx        nginx:1.17.1   
pc-deployment-675d469f8b   0         0         0       14m     nginx        nginx:1.17.2   
pc-deployment-6c9f56fcfb   2         2         2       3m16s   nginx        nginx:1.17.4   
[root@k8s-master01 ~]# kubectl get pods -n dev
NAME                             READY   STATUS    RESTARTS   AGE
pc-deployment-5d89bdfbf9-rj8sq   1/1     Running   0          7m33s
pc-deployment-5d89bdfbf9-ttwgg   1/1     Running   0          7m35s
pc-deployment-5d89bdfbf9-v4wvc   1/1     Running   0          7m34s
pc-deployment-6c9f56fcfb-996rt   1/1     Running   0          3m31s
pc-deployment-6c9f56fcfb-j2gtj   1/1     Running   0          3m31s#确保更新的pod没问题了,继续更新
[root@k8s-master01 ~]# kubectl rollout resume deploy pc-deployment -n dev
deployment.apps/pc-deployment resumed#查看最后的更新情况
[root@k8s-master01 ~]# kubectl get rs -n dev -o wide
NAME                       DESIRED   CURRENT   READY   AGE     CONTAINERS   IMAGES         
pc-deployment-5d89bdfbf9   0         0         0       21m     nginx        nginx:1.17.1   
pc-deployment-675d469f8b   0         0         0       16m     nginx        nginx:1.17.2   
pc-deployment-6c9f56fcfb   4         4         4       5m11s   nginx        nginx:1.17.4   [root@k8s-master01 ~]# kubectl get pods -n dev
NAME                             READY   STATUS    RESTARTS   AGE
pc-deployment-6c9f56fcfb-7bfwh   1/1     Running   0          37s
pc-deployment-6c9f56fcfb-996rt   1/1     Running   0          5m27s
pc-deployment-6c9f56fcfb-j2gtj   1/1     Running   0          5m27s
pc-deployment-6c9f56fcfb-rf84v   1/1     Running   0          37s

删除Deployment

#删除deployment,其下的rs和pod也将被删除
[root@k8s-master01 ~]# kubectl delete -f pc-deployment.yaml
deployment.apps "pc-deployment" deleted

Horizontal Pod Autoscaler(HPA)
在前面的课程中,我们已经可以实现通过手工执行kubectl scale命令实现Pod扩容或缩容,但是这显然不符合Kubernetes的定位目标–自动化、智能化。 Kubernetes期望可以实现通过监测Pod的使用情况,实现pod数量的自动调整,于是就产生了Horizontal Pod Autoscaler(HPA)这种控制器。

HPA可以获取每个Pod利用率,然后和HPA中定义的指标进行对比,同时计算出需要伸缩的具体值,最后实现Pod的数量的调整。其实HPA与之前的Deployment一样,也属于一种Kubernetes资源对象,它通过追踪分析RC控制的所有目标Pod的负载变化情况,来确定是否需要针对性地调整目标Pod的副本数,这是HPA的实现原理。

img

接下来,我们来做一个实验

安装metrics-server
metrics-server可以用来收集集群中的资源使用情况

#安装git
[root@k8s-master01 ~]# yum install git -y
#获取metrics-server, 注意使用的版本
[root@k8s-master01 ~]# git clone -b v0.3.6 https://github.com/kubernetes-incubator/metrics-server
#修改deployment, 注意修改的是镜像和初始化参数
[root@k8s-master01 ~]# cd /root/metrics-server/deploy/1.8+/
[root@k8s-master01 1.8+]# vim metrics-server-deployment.yaml

按图中添加下面选项
hostNetwork: true
image: registry.cn-hangzhou.aliyuncs.com/google_containers/metrics-server-amd64:v0.3.6
args:

  • –kubelet-insecure-tls
  • –kubelet-preferred-address-types=InternalIP,Hostname,InternalDNS,ExternalDNS,ExternalIP

image-20200608163326496

#安装metrics-server
[root@k8s-master01 1.8+]# kubectl apply -f ./#查看pod运行情况
[root@k8s-master01 1.8+]# kubectl get pod -n kube-system
metrics-server-6b976979db-2xwbj   1/1     Running   0          90s#使用kubectl top node 查看资源使用情况
[root@k8s-master01 1.8+]# kubectl top node
NAME           CPU(cores)   CPU%   MEMORY(bytes)   MEMORY%
k8s-master01   289m         14%    1582Mi          54%       
k8s-node01     81m          4%     1195Mi          40%       
k8s-node02     72m          3%     1211Mi          41%  
[root@k8s-master01 1.8+]# kubectl top pod -n kube-system
NAME                              CPU(cores)   MEMORY(bytes)
coredns-6955765f44-7ptsb          3m           9Mi
coredns-6955765f44-vcwr5          3m           8Mi
etcd-master                       14m          145Mi
...
#至此,metrics-server安装完成

准备deployment和servie
创建pc-hpa-pod.yaml文件,内容如下:

apiVersion: apps/v1
kind: Deployment
metadata:name: nginxnamespace: dev
spec:strategy: # 策略type: RollingUpdate # 滚动更新策略replicas: 1selector:matchLabels:app: nginx-podtemplate:metadata:labels:app: nginx-podspec:containers:- name: nginximage: nginx:1.17.1resources: # 资源配额limits:  # 限制资源(上限)cpu: "1" # CPU限制,单位是core数requests: # 请求资源(下限)cpu: "100m"  # CPU限制,单位是core数
#创建deployment
[root@k8s-master01 1.8+]# kubectl run nginx --image=nginx:1.17.1 --requests=cpu=100m -n dev
#创建service
[root@k8s-master01 1.8+]# kubectl expose deployment nginx --type=NodePort --port=80 -n dev
#查看
[root@k8s-master01 1.8+]# kubectl get deployment,pod,svc -n dev
NAME                    READY   UP-TO-DATE   AVAILABLE   AGE
deployment.apps/nginx   1/1     1            1           47sNAME                         READY   STATUS    RESTARTS   AGE
pod/nginx-7df9756ccc-bh8dr   1/1     Running   0          47sNAME            TYPE       CLUSTER-IP      EXTERNAL-IP   PORT(S)        AGE
service/nginx   NodePort   10.101.18.29   <none>        80:31830/TCP   35s

部署HPA
创建pc-hpa.yaml文件,内容如下:

apiVersion: autoscaling/v1
kind: HorizontalPodAutoscaler
metadata:name: pc-hpanamespace: dev
spec:minReplicas: 1  #最小pod数量maxReplicas: 10 #最大pod数量targetCPUUtilizationPercentage: 3 # CPU使用率指标scaleTargetRef:   # 指定要控制的nginx信息apiVersion:  apps/v1kind: Deploymentname: nginx
#创建hpa
[root@k8s-master01 1.8+]# kubectl create -f pc-hpa.yaml
horizontalpodautoscaler.autoscaling/pc-hpa created#查看hpa[root@k8s-master01 1.8+]# kubectl get hpa -n dev
NAME     REFERENCE          TARGETS   MINPODS   MAXPODS   REPLICAS   AGE
pc-hpa   Deployment/nginx   0%/3%     1         10        1          62s

测试
使用压测工具对service地址192.168.5.4:31830进行压测,然后通过控制台查看hpa和pod的变化

hpa变化

[root@k8s-master01 ~]# kubectl get hpa -n dev -w
NAME   REFERENCE      TARGETS  MINPODS  MAXPODS  REPLICAS  AGE
pc-hpa  Deployment/nginx  0%/3%   1     10     1      4m11s
pc-hpa  Deployment/nginx  0%/3%   1     10     1      5m19s
pc-hpa  Deployment/nginx  22%/3%   1     10     1      6m50s
pc-hpa  Deployment/nginx  22%/3%   1     10     4      7m5s
pc-hpa  Deployment/nginx  22%/3%   1     10     8      7m21s
pc-hpa  Deployment/nginx  6%/3%   1     10     8      7m51s
pc-hpa  Deployment/nginx  0%/3%   1     10     8      9m6s
pc-hpa  Deployment/nginx  0%/3%   1     10     8      13m
pc-hpa  Deployment/nginx  0%/3%   1     10     1      14m

deployment变化

[root@k8s-master01 ~]# kubectl get deployment -n dev -w
NAME    READY   UP-TO-DATE   AVAILABLE   AGE
nginx   1/1     1            1           11m
nginx   1/4     1            1           13m
nginx   1/4     1            1           13m
nginx   1/4     1            1           13m
nginx   1/4     4            1           13m
nginx   1/8     4            1           14m
nginx   1/8     4            1           14m
nginx   1/8     4            1           14m
nginx   1/8     8            1           14m
nginx   2/8     8            2           14m
nginx   3/8     8            3           14m
nginx   4/8     8            4           14m
nginx   5/8     8            5           14m
nginx   6/8     8            6           14m
nginx   7/8     8            7           14m
nginx   8/8     8            8           15m
nginx   8/1     8            8           20m
nginx   8/1     8            8           20m
nginx   1/1     1            1           20m

pod变化

[root@k8s-master01 ~]# kubectl get pods -n dev -w
NAME                     READY   STATUS    RESTARTS   AGE
nginx-7df9756ccc-bh8dr   1/1     Running   0          11m
nginx-7df9756ccc-cpgrv   0/1     Pending   0          0s
nginx-7df9756ccc-8zhwk   0/1     Pending   0          0s
nginx-7df9756ccc-rr9bn   0/1     Pending   0          0s
nginx-7df9756ccc-cpgrv   0/1     ContainerCreating   0          0s
nginx-7df9756ccc-8zhwk   0/1     ContainerCreating   0          0s
nginx-7df9756ccc-rr9bn   0/1     ContainerCreating   0          0s
nginx-7df9756ccc-m9gsj   0/1     Pending             0          0s
nginx-7df9756ccc-g56qb   0/1     Pending             0          0s
nginx-7df9756ccc-sl9c6   0/1     Pending             0          0s
nginx-7df9756ccc-fgst7   0/1     Pending             0          0s
nginx-7df9756ccc-g56qb   0/1     ContainerCreating   0          0s
nginx-7df9756ccc-m9gsj   0/1     ContainerCreating   0          0s
nginx-7df9756ccc-sl9c6   0/1     ContainerCreating   0          0s
nginx-7df9756ccc-fgst7   0/1     ContainerCreating   0          0s
nginx-7df9756ccc-8zhwk   1/1     Running             0          19s
nginx-7df9756ccc-rr9bn   1/1     Running             0          30s
nginx-7df9756ccc-m9gsj   1/1     Running             0          21s
nginx-7df9756ccc-cpgrv   1/1     Running             0          47s
nginx-7df9756ccc-sl9c6   1/1     Running             0          33s
nginx-7df9756ccc-g56qb   1/1     Running             0          48s
nginx-7df9756ccc-fgst7   1/1     Running             0          66s
nginx-7df9756ccc-fgst7   1/1     Terminating         0          6m50s
nginx-7df9756ccc-8zhwk   1/1     Terminating         0          7m5s
nginx-7df9756ccc-cpgrv   1/1     Terminating         0          7m5s
nginx-7df9756ccc-g56qb   1/1     Terminating         0          6m50s
nginx-7df9756ccc-rr9bn   1/1     Terminating         0          7m5s
nginx-7df9756ccc-m9gsj   1/1     Terminating         0          6m50s
nginx-7df9756ccc-sl9c6   1/1     Terminating         0          6m50s

DaemonSet(DS)
DaemonSet类型的控制器可以保证在集群中的每一台(或指定)节点上都运行一个副本。一般适用于日志收集、节点监控等场景。也就是说,如果一个Pod提供的功能是节点级别的(每个节点都需要且只需要一个),那么这类Pod就适合使用DaemonSet类型的控制器创建。

img

DaemonSet控制器的特点:

每当向集群中添加一个节点时,指定的 Pod 副本也将添加到该节点上
当节点从集群中移除时,Pod 也就被垃圾回收了
下面先来看下DaemonSet的资源清单文件

apiVersion: apps/v1 # 版本号
kind: DaemonSet # 类型       
metadata: # 元数据name: # rs名称 namespace: # 所属命名空间 labels: #标签controller: daemonset
spec: # 详情描述revisionHistoryLimit: 3 # 保留历史版本updateStrategy: # 更新策略type: RollingUpdate # 滚动更新策略rollingUpdate: # 滚动更新maxUnavailable: 1 # 最大不可用状态的 Pod 的最大值,可以为百分比,也可以为整数selector: # 选择器,通过它指定该控制器管理哪些podmatchLabels:      # Labels匹配规则app: nginx-podmatchExpressions: # Expressions匹配规则- {key: app, operator: In, values: [nginx-pod]}template: # 模板,当副本数量不足时,会根据下面的模板创建pod副本metadata:labels:app: nginx-podspec:containers:- name: nginximage: nginx:1.17.1ports:- containerPort: 80

创建pc-daemonset.yaml,内容如下:

apiVersion: apps/v1
kind: DaemonSet      
metadata:name: pc-daemonsetnamespace: dev
spec: selector:matchLabels:app: nginx-podtemplate:metadata:labels:app: nginx-podspec:containers:- name: nginximage: nginx:1.17.1
#创建daemonset
[root@k8s-master01 ~]# kubectl create -f  pc-daemonset.yaml
daemonset.apps/pc-daemonset created#查看daemonset
[root@k8s-master01 ~]#  kubectl get ds -n dev -o wide
NAME        DESIRED  CURRENT  READY  UP-TO-DATE  AVAILABLE   AGE   CONTAINERS   IMAGES         
pc-daemonset   2        2        2      2           2        24s   nginx        nginx:1.17.1   #查看pod,发现在每个Node上都运行一个pod
[root@k8s-master01 ~]#  kubectl get pods -n dev -o wide
NAME                 READY   STATUS    RESTARTS   AGE   IP            NODE    
pc-daemonset-9bck8   1/1     Running   0          37s   10.244.1.43   node1     
pc-daemonset-k224w   1/1     Running   0          37s   10.244.2.74   node2      #删除daemonset
[root@k8s-master01 ~]# kubectl delete -f pc-daemonset.yaml
daemonset.apps "pc-daemonset" deleted

Job
Job,主要用于负责**批量处理(一次要处理指定数量任务)短暂的一次性(每个任务仅运行一次就结束)**任务。Job特点如下:

当Job创建的pod执行成功结束时,Job将记录成功结束的pod数量
当成功结束的pod达到指定的数量时,Job将完成执行
img

Job的资源清单文件:

apiVersion: batch/v1 # 版本号
kind: Job # 类型       
metadata: # 元数据name: # rs名称 namespace: # 所属命名空间 labels: #标签controller: job
spec: # 详情描述completions: 1 # 指定job需要成功运行Pods的次数。默认值: 1parallelism: 1 # 指定job在任一时刻应该并发运行Pods的数量。默认值: 1activeDeadlineSeconds: 30 # 指定job可运行的时间期限,超过时间还未结束,系统将会尝试进行终止。backoffLimit: 6 # 指定job失败后进行重试的次数。默认是6manualSelector: true # 是否可以使用selector选择器选择pod,默认是falseselector: # 选择器,通过它指定该控制器管理哪些podmatchLabels:      # Labels匹配规则app: counter-podmatchExpressions: # Expressions匹配规则- {key: app, operator: In, values: [counter-pod]}template: # 模板,当副本数量不足时,会根据下面的模板创建pod副本metadata:labels:app: counter-podspec:restartPolicy: Never # 重启策略只能设置为Never或者OnFailurecontainers:- name: counterimage: busybox:1.30command: ["bin/sh","-c","for i in 9 8 7 6 5 4 3 2 1; do echo $i;sleep 2;done"]

关于重启策略设置的说明:
如果指定为OnFailure,则job会在pod出现故障时重启容器,而不是创建pod,failed次数不变
如果指定为Never,则job会在pod出现故障时创建新的pod,并且故障pod不会消失,也不会重启,failed次数加1
如果指定为Always的话,就意味着一直重启,意味着job任务会重复去执行了,当然不对,所以不能设置为Always
创建pc-job.yaml,内容如下:

apiVersion: batch/v1
kind: Job      
metadata:name: pc-jobnamespace: dev
spec:manualSelector: trueselector:matchLabels:app: counter-podtemplate:metadata:labels:app: counter-podspec:restartPolicy: Nevercontainers:- name: counterimage: busybox:1.30command: ["bin/sh","-c","for i in 9 8 7 6 5 4 3 2 1; do echo $i;sleep 3;done"]
#创建job
[root@k8s-master01 ~]# kubectl create -f pc-job.yaml
job.batch/pc-job created#查看job
[root@k8s-master01 ~]# kubectl get job -n dev -o wide  -w
NAME     COMPLETIONS   DURATION   AGE   CONTAINERS   IMAGES         SELECTOR
pc-job   0/1           21s        21s   counter      busybox:1.30   app=counter-pod
pc-job   1/1           31s        79s   counter      busybox:1.30   app=counter-pod#通过观察pod状态可以看到,pod在运行完毕任务后,就会变成Completed状态
[root@k8s-master01 ~]# kubectl get pods -n dev -w
NAME           READY   STATUS     RESTARTS      AGE
pc-job-rxg96   1/1     Running     0            29s
pc-job-rxg96   0/1     Completed   0            33s#接下来,调整下pod运行的总数量和并行数量 即:在spec下设置下面两个选项
#completions: 6 # 指定job需要成功运行Pods的次数为6
#parallelism: 3 # 指定job并发运行Pods的数量为3
#然后重新运行job,观察效果,此时会发现,job会每次运行3个pod,总共执行了6个pod
[root@k8s-master01 ~]# kubectl get pods -n dev -w
NAME           READY   STATUS    RESTARTS   AGE
pc-job-684ft   1/1     Running   0          5s
pc-job-jhj49   1/1     Running   0          5s
pc-job-pfcvh   1/1     Running   0          5s
pc-job-684ft   0/1     Completed   0          11s
pc-job-v7rhr   0/1     Pending     0          0s
pc-job-v7rhr   0/1     Pending     0          0s
pc-job-v7rhr   0/1     ContainerCreating   0          0s
pc-job-jhj49   0/1     Completed           0          11s
pc-job-fhwf7   0/1     Pending             0          0s
pc-job-fhwf7   0/1     Pending             0          0s
pc-job-pfcvh   0/1     Completed           0          11s
pc-job-5vg2j   0/1     Pending             0          0s
pc-job-fhwf7   0/1     ContainerCreating   0          0s
pc-job-5vg2j   0/1     Pending             0          0s
pc-job-5vg2j   0/1     ContainerCreating   0          0s
pc-job-fhwf7   1/1     Running             0          2s
pc-job-v7rhr   1/1     Running             0          2s
pc-job-5vg2j   1/1     Running             0          3s
pc-job-fhwf7   0/1     Completed           0          12s
pc-job-v7rhr   0/1     Completed           0          12s
pc-job-5vg2j   0/1     Completed           0          12s#删除job
[root@k8s-master01 ~]# kubectl delete -f pc-job.yaml
job.batch "pc-job" deleted

CronJob(CJ)
CronJob控制器以 Job控制器资源为其管控对象,并借助它管理pod资源对象,Job控制器定义的作业任务在其控制器资源创建之后便会立即执行,但CronJob可以以类似于Linux操作系统的周期性任务作业计划的方式控制其运行时间点及重复运行的方式。也就是说,CronJob可以在特定的时间点(反复的)去运行job任务。

img

CronJob的资源清单文件:

apiVersion: batch/v1beta1 # 版本号
kind: CronJob # 类型       
metadata: # 元数据name: # rs名称 namespace: # 所属命名空间 labels: #标签controller: cronjob
spec: # 详情描述schedule: # cron格式的作业调度运行时间点,用于控制任务在什么时间执行concurrencyPolicy: # 并发执行策略,用于定义前一次作业运行尚未完成时是否以及如何运行后一次的作业failedJobHistoryLimit: # 为失败的任务执行保留的历史记录数,默认为1successfulJobHistoryLimit: # 为成功的任务执行保留的历史记录数,默认为3startingDeadlineSeconds: # 启动作业错误的超时时长jobTemplate: # job控制器模板,用于为cronjob控制器生成job对象;下面其实就是job的定义metadata:spec:completions: 1parallelism: 1activeDeadlineSeconds: 30backoffLimit: 6manualSelector: trueselector:matchLabels:app: counter-podmatchExpressions: 规则- {key: app, operator: In, values: [counter-pod]}template:metadata:labels:app: counter-podspec:restartPolicy: Never containers:- name: counterimage: busybox:1.30command: ["bin/sh","-c","for i in 9 8 7 6 5 4 3 2 1; do echo $i;sleep 20;done"]

需要重点解释的几个选项:
schedule: cron表达式,用于指定任务的执行时间
*/1 * * * *
<分钟> <小时> <日> <月份> <星期>

分钟 值从 0 到 59.
小时 值从 0 到 23.
日 值从 1 到 31.
月 值从 1 到 12.
星期 值从 0 到 6, 0 代表星期日
多个时间可以用逗号隔开; 范围可以用连字符给出;*可以作为通配符; /表示每...

concurrencyPolicy:
Allow: 允许Jobs并发运行(默认)
Forbid: 禁止并发运行,如果上一次运行尚未完成,则跳过下一次运行
Replace: 替换,取消当前正在运行的作业并用新作业替换它
创建pc-cronjob.yaml,内容如下:

apiVersion: batch/v1beta1
kind: CronJob
metadata:name: pc-cronjobnamespace: devlabels:controller: cronjob
spec:schedule: "*/1 * * * *"jobTemplate:metadata:spec:template:spec:restartPolicy: Nevercontainers:- name: counterimage: busybox:1.30command: ["bin/sh","-c","for i in 9 8 7 6 5 4 3 2 1; do echo $i;sleep 3;done"]
#创建cronjob
[root@k8s-master01 ~]# kubectl create -f pc-cronjob.yaml
cronjob.batch/pc-cronjob created#查看cronjob
[root@k8s-master01 ~]# kubectl get cronjobs -n dev
NAME         SCHEDULE      SUSPEND   ACTIVE   LAST SCHEDULE   AGE
pc-cronjob   */1 * * * *   False     0        <none>          6s#查看job
[root@k8s-master01 ~]# kubectl get jobs -n dev
NAME                    COMPLETIONS   DURATION   AGE
pc-cronjob-1592587800   1/1           28s        3m26s
pc-cronjob-1592587860   1/1           28s        2m26s
pc-cronjob-1592587920   1/1           28s        86s#查看pod
[root@k8s-master01 ~]# kubectl get pods -n dev
pc-cronjob-1592587800-x4tsm   0/1     Completed   0          2m24s
pc-cronjob-1592587860-r5gv4   0/1     Completed   0          84s
pc-cronjob-1592587920-9dxxq   1/1     Running     0          24s#删除cronjob
[root@k8s-master01 ~]# kubectl  delete -f pc-cronjob.yaml
cronjob.batch "pc-cronjob" deleted

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/189065.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【MySQL】MySQL安装 环境初始化

MySQL安装 MYSQL官网 安装完成后,傻瓜下一步即可 配置一下环境变量即可 (1) 初始化MySQL, 管理员身份运行 mysqld --initialize-insecure(2) 注册 mysqld mysqld -install# 如果记录以前的版本执行下面指令 mysqld -remove(3) 启动MySQL服务 // 启动mysql服务 net start …

adb环境搭建(adb下载与安装)

文章目录 前言一、adb下载二、adb安装1.将下载的安装包解压缩2.将解压缩后的文件夹放到自己想存放的目录下&#xff08;不要放到带有中文的目录下&#xff09;——我这放到D盘根目录下3.配置环境变量3.1.鼠标放到 "此电脑"→鼠标右击→选择属性3.2.点击 "高级系…

pycharm closing卡住 解决办法

别处看到的&#xff0c;亲测有效 1.升级 pycharm 到 2023.3 2.pycharm 主页 Help -> Find Action -> 输入 Registry -> 禁用ide.await.scope.completion PyCharm 2023.1.2版本关闭后一直显示正在关闭项目 - 知乎

matlab基于线性二次调节器(LQR)法实现机器人路径规划可变轨迹跟踪

1、内容简介 略 可以交流、咨询、答疑 2、内容说明 基于线性二次调节器(LQR)法实现机器人路径规划可变轨迹跟踪 3、仿真分析 略 load path.mat %% 轨迹处理 % 定义参考轨迹 refPos_x path(:,1); refPos_y path(:,2); refPos [refPos_x, refPos_y];% 计算航向角和曲率 …

java设计模式学习之【对象池模式】

文章目录 引言对象池模式简介定义与用途实现方式 使用场景优势与劣势对象池模式在Spring中的应用JDBC对象池示例代码地址小结 引言 对象池模式在资源管理和性能优化方面发挥着重要作用。这种模式通过重复使用已经初始化的对象&#xff0c;而不是频繁创建和销毁&#xff0c;减少…

解决tailwind与element样式冲突

解决tailwind与element样式冲突 一、问题描述1.环境&#xff1a;2.问题3.原因 二、解决方法1.在tailwind.config.js中关闭默认样式2.拷贝Tailwind默认样式修改并引用3.在main.js中引用preflight.css 一、问题描述 1.环境&#xff1a; TailwindCSS Element plus 2.问题 el-…

现代 C++ 函数式编程指南

现代 C 函数式编程指南 什么是 柯里化 &#xff08;Curry&#xff09;什么是 部分应用 &#xff08;Partial Application&#xff09; 二元函数 &#xff08;Partial Application&#xff09;参数排序 &#xff08;Partial Application&#xff09; 应用场景 计算碳衰减周期求年…

基于Java SSM框架实现汽车在线销售系统项目【项目源码+论文说明】

基于java的SSM框架实现汽车在线销售系统演示 摘要 21世纪的今天&#xff0c;随着社会的不断发展与进步&#xff0c;人们对于信息科学化的认识&#xff0c;已由低层次向高层次发展&#xff0c;由原来的感性认识向理性认识提高&#xff0c;管理工作的重要性已逐渐被人们所认识&a…

quick_快应用_广告接入

目录 接入厂商广告oppo广商接入广告banner广告信息流广告[1] 组件封装[2] 渲染数据[3] 测试[4] 样式调整[5] 加载失败[6] 预加载[7] 应用要素信息 接入厂商广告 广告接口 [1] 接口声明 {"name":"service.ad"}[2] 导入模块 import ad from service.ad 或 c…

[FUNC]判断窗口在哪一个屏幕上

#Requires AutoHotkey v2.0#z:: { ToolTip "Notepad窗口所在显示屏是&#xff1a;" GetMonitor() } GetMonitor() {CoordMode("Mouse", "Screen"); MouseGetPos &mx, &myWinGetPos &mx, &my,,,"ahk_class Notepad"…

【小布_ORACLE笔记】Part11-6 RMAN Backups

【小布_ORACLE笔记】Part11-6 RMAN Backups 1.track文件的作用 当做差异性备份时&#xff0c;server process对应的RMAN客户端的server process就不用去每个块每个块的检查&#xff0c;只要到trackfile 里面去读一下&#xff0c;看哪个块改变了就直接把哪个块备份下来&#x…

matlab 混沌动力学行为-分岔图-李雅普指数等

1、内容简介 略 24-可以交流、咨询、答疑 2、内容说明 混沌动力学行为-分岔图-李雅普指数等 包含各种类型的混沌模型求解&#xff0c;包含其分叉图、李雅普指数等 混沌、分叉图、李雅普指数 3、仿真分析 略 4、参考论文 略 链接&#xff1a;https://pan.baidu.com/…

无限移动的风景 css3 动画 鼠标移入暂停

<style>*{margin:0;padding:0;/* box-sizing: border-box; */}ul{list-style: none;}#nav{width:900px;height:100px;border:2px solid rgb(70, 69, 69);margin:100px auto; overflow: hidden;}#nav ul{animation:moving 5s linear infinite;width:200%; /*怎么模拟动画…

【已解决】Cannot find project Scala library 2.11.8 for module XXX

问题描述 在 flink 示例程序调试过程中&#xff0c;reload project 报错 Cannot find project Scala library 2.11.8 for module HbasePrint 报错如下图所示&#xff1a; 问题解决 经过搜索&#xff0c;初步判定是 pom 文件中 Scala 版本配置和项目中实际使用的版本不一致导…

在 SQL Server 中备份和恢复数据库的最佳方法

在SQL Server中&#xff0c;创建备份和执行还原操作对于确保数据完整性、灾难恢复和数据库维护至关重要。以下是备份和恢复过程的概述&#xff1a; 方法 1. 使用 SQL Server Management Studio (SSMS) 备份和还原数据库 按照 SSMS 步骤备份 SQL 数据库 打开 SSMS 并连接到您…

什么是OV SSL证书?

OV SSL证书是组织验证SSL证书的缩写&#xff0c;是三个SSL验证级别之一的名称。 OV是指实名类型的SSL证书&#xff0c;这个实名其实只要证明发布者身份就可以签发&#xff0c;无论是个人还是企业都可以进行申请。 SSL证书大家都知道就是用于网站地址的http改成https加密协议的…

Redis部署-主从模式

目录 单点问题 主从模式 解析主从模式 配置redis主从模式 info replication命令查看复制相关的状态 断开复制关系 安全性 只读 传输延迟 拓扑结构 数据同步psync replicationid offset psync运行流程 全量复制流程 无硬盘模式 部分复制流程 积压缓冲区 实时复…

如何生成纯文本的目录树

参考资料&#xff1a; https://ascii-tree-generator.com/ 无需多言&#xff0c;感谢这些前辈的智慧。界面如下&#xff1a;

河南省第一届职业技能大赛网络安全项目试题

河南省第一届职业技能大赛 网络安全项目试题 一、竞赛时间 总计&#xff1a;420分钟 竞赛阶段 竞赛阶段 任务阶段 竞赛任务 竞赛时间 分值 A模块 A-1 登录安全加固 240分钟 200分 A-2 Web安全加固&#xff08;Web&#xff09; A-3 流量完整性保护与事件监控&am…

【AB平台数据建设】从实验平台到数据管道

文章目录 前言1.从AB实验平台聊起(1)AB平台在业务中的发挥那些作用(2)AB平台进行实验工作流介绍 2.实验平台底层数据管道最小MVP解构(1)数据管道数据从哪里来&#xff1f;(2)数据管道的输出数据有哪些&#xff1f; 小结 前言 AB实验平台是一种通过小范围放量&#xff0c;测试不…