基于YOLOv8深度学习的安全帽目标检测系统【python源码+Pyqt5界面+数据集+训练代码】目标检测、深度学习实战

《博主简介》

小伙伴们好,我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。
更多学习资源,可关注公-仲-hao:【阿旭算法与机器学习】,共同学习交流~
👍感谢小伙伴们点赞、关注!

《------往期经典推荐------》

一、AI应用软件开发实战专栏【链接】

项目名称项目名称
1.【人脸识别与管理系统开发】2.【车牌识别与自动收费管理系统开发】
3.【手势识别系统开发】4.【人脸面部活体检测系统开发】
5.【图片风格快速迁移软件开发】6.【人脸表表情识别系统】
7.【YOLOv8多目标识别与自动标注软件开发】8.【基于YOLOv8深度学习的行人跌倒检测系统】
9.【基于YOLOv8深度学习的PCB板缺陷检测系统】10.【基于YOLOv8深度学习的生活垃圾分类目标检测系统】

二、机器学习实战专栏【链接】,已更新31期,欢迎关注,持续更新中~~
三、深度学习【Pytorch】专栏【链接】

《------正文------》

基本功能演示

在这里插入图片描述

摘要:安全帽检测在日常生活和工作中具有重要的意义。佩戴安全帽是预防头部受伤的有效手段,尤其在建筑工地、工厂、矿山等高风险环境中,佩戴安全帽对于保障人身安全至关重要。本文基于YOLOv8深度学习框架,通过7581张图片,训练了一个进行人员是否佩戴安全帽的目标检测模型,准确率高达0.95。并基于此模型开发了一款带UI界面的安全帽检测系统,可用于实时检测人员是否有佩戴安全帽,更方便进行功能的展示。该系统是基于pythonPyQT5开发的,支持图片视频以及摄像头进行目标检测,并保存检测结果。本文提供了完整的Python代码和使用教程,给感兴趣的小伙伴参考学习,完整的代码资源文件获取方式见文末

文章目录

  • 基本功能演示
  • 前言
  • 一、软件核心功能介绍及效果演示
    • 软件主要功能
    • (1)图片检测演示
    • (2)视频检测演示
    • (3)摄像头检测演示
    • (4)保存图片与视频检测结果
  • 二、模型的训练、评估与推理
    • 1.YOLOv8的基本原理
    • 2. 数据集准备与训练
    • 3. 训练结果评估
    • 4. 检测结果识别
  • 【获取方式】
  • 结束语

点击跳转至文末《完整相关文件及源码》获取


前言

安全帽检测在日常生活和工作中具有重要的意义。佩戴安全帽是预防头部受伤的有效手段,尤其在建筑工地、工厂、矿山等高风险环境中,佩戴安全帽对于保障人身安全至关重要。然而,在实际生活中,我们经常会遇到一些人员未佩戴安全帽的情况,这不仅增加了他们自身的安全风险,还可能对周围人造成潜在的安全隐患。

安全帽检测的应用场景非常广泛,主要包括以下几个方面:
建筑工地:在建筑工地上,工人需要佩戴安全帽以保护头部免受坠落物、碰撞等意外伤害。通过使用安全帽检测软件,可以实时监控工人是否佩戴安全帽,提高工地安全管理水平。
工厂与矿山:在工厂和矿山等高风险环境中,员工同样需要佩戴安全帽。安全帽检测软件可以帮助企业管理人员及时发现未佩戴安全帽的员工,及时进行提醒和教育,降低事故发生的风险。
交通执法:在交通执法过程中,执法人员可以使用安全帽检测软件对驾驶员是否佩戴安全帽进行快速、准确的判断,提高执法效率。
教育培训:在安全生产教育培训中,安全帽检测软件可以作为一种教学辅助工具,帮助学员更好地理解佩戴安全帽的重要性和方法。
总之,安全帽检测在保障人们生命财产安全方面发挥着重要作用,通过使用相关软件,我们可以更加高效地管理和维护各类场所的安全秩序。

博主通过搜集人员是否佩戴安全帽的相关数据图片,根据YOLOv8的目标检测技术,基于python与Pyqt5开发了一款界面简洁的人员安全帽检测系统,可支持图片、视频以及摄像头检测,同时可以将图片或者视频检测结果进行保存

软件基本界面如下图所示:
在这里插入图片描述

一、软件核心功能介绍及效果演示

软件主要功能

1. 可进行人员佩戴安全帽未戴安全帽两种状态的目标检测;
2. 支持图片、视频及摄像头进行检测,同时支持图片的批量检测
3. 界面可实时显示目标位置目标总数置信度用时等信息;
4. 支持图片或者视频检测结果保存

(1)图片检测演示

点击图片图标,选择需要检测的图片,或者点击文件夹图标,选择需要批量检测图片所在的文件夹,操作演示如下:
点击目标下拉框后,可以选定指定目标的结果信息进行显示。 点击保存按钮,会对视频检测结果进行保存,存储路径为:save_data目录下。
注:1.右侧目标位置默认显示置信度最大一个目标位置。所有检测结果均在左下方表格中显示。
单个图片检测操作如下:
在这里插入图片描述

批量图片检测操作如下:
在这里插入图片描述

(2)视频检测演示

点击视频图标,打开选择需要检测的视频,就会自动显示检测结果。点击保存按钮,会对视频检测结果进行保存,存储路径为:save_data目录下。
在这里插入图片描述

(3)摄像头检测演示

点击摄像头图标,可以打开摄像头,可以实时进行检测,再次点击摄像头图标,可关闭摄像头。
在这里插入图片描述

(4)保存图片与视频检测结果

点击保存按钮后,会将当前选择的图片【含批量图片】或者视频的检测结果进行保存。检测的图片与视频结果会存储在save_data目录下。
在这里插入图片描述

在这里插入图片描述

二、模型的训练、评估与推理

1.YOLOv8的基本原理

YOLOv8是一种前沿的目标检测技术,它基于先前YOLO版本在目标检测任务上的成功,进一步提升了性能和灵活性。主要的创新点包括一个新的骨干网络、一个新的 Ancher-Free 检测头和一个新的损失函数,可以在从 CPU 到 GPU 的各种硬件平台上运行
其主要网络结构如下:
在这里插入图片描述

2. 数据集准备与训练

通过网络上搜集关于安全帽的各类图片,并使用LabelMe标注工具对每张图片中的目标边框(Bounding Box)及类别进行标注。一共包含7581张图片,其中训练集包含6064张图片验证集包含1517张图片,部分图像及标注如下图所示。
在这里插入图片描述
在这里插入图片描述

图片数据的存放格式如下,在项目目录中新建datasets目录,同时将跌倒检测的图片分为训练集与验证集放入helmetData目录下。
在这里插入图片描述
同时我们需要新建一个data.yaml文件,用于存储训练数据的路径及模型需要进行检测的类别。YOLOv8在进行模型训练时,会读取该文件的信息,用于进行模型的训练与验证。data.yaml的具体内容如下:

train: E:\MyCVProgram\HelmetDetection\datasets\helmetData\train  # train images (relative to 'path') 128 images
val: E:\MyCVProgram\HelmetDetection\datasets\helmetData\val  # val images (relative to 'path') 128 images
test:  # val images (optional)# number of classes
nc: 2# Classes
names: ['Helmet', 'NoHelmet']

注:train与val后面表示需要训练图片的路径,建议直接写自己文件的绝对路径。
数据准备完成后,通过调用train.py文件进行模型训练,epochs参数用于调整训练的轮数,batch参数用于调整训练的批次大小【根据内存大小调整,最小为1】,代码如下:

# 加载模型
model = YOLO("yolov8n.pt")  # 加载预训练模型
# Use the model
if __name__ == '__main__':# Use the modelresults = model.train(data='datasets/helmetData/data.yaml', epochs=250, batch=4)  # 训练模型# 将模型转为onnx格式# success = model.export(format='onnx')

3. 训练结果评估

在深度学习中,我们通常用损失函数下降的曲线来观察模型训练的情况。YOLOv8在训练时主要包含三个方面的损失:定位损失(box_loss)、分类损失(cls_loss)和动态特征损失(dfl_loss),在训练结束后,可以在runs/目录下找到训练过程及结果文件,如下所示:
在这里插入图片描述

各损失函数作用说明:
定位损失box_loss:预测框与标定框之间的误差(GIoU),越小定位得越准;
分类损失cls_loss:计算锚框与对应的标定分类是否正确,越小分类得越准;
动态特征损失(dfl_loss):DFLLoss是一种用于回归预测框与目标框之间距离的损失函数。在计算损失时,目标框需要缩放到特征图尺度,即除以相应的stride,并与预测的边界框计算Ciou Loss,同时与预测的anchors中心点到各边的距离计算回归DFLLoss。这个过程是YOLOv8训练流程中的一部分,通过计算DFLLoss可以更准确地调整预测框的位置,提高目标检测的准确性。
本文训练结果如下:
在这里插入图片描述
我们通常用PR曲线来体现精确率和召回率的关系,本文训练结果的PR曲线如下。mAP表示Precision和Recall作为两轴作图后围成的面积,m表示平均,@后面的数表示判定iou为正负样本的阈值。mAP@.5:表示阈值大于0.5的平均mAP,可以看到本文模型两类目标检测的mAP@0.5已经达到了0.94以上,平均值为0.946,结果还是很不错的。
在这里插入图片描述

4. 检测结果识别

模型训练完成后,我们可以得到一个最佳的训练结果模型best.pt文件,在runs/trian/weights目录下。我们可以使用该文件进行后续的推理检测。
图片检测代码如下:

# 所需加载的模型目录
path = 'models/best.pt'
# 需要检测的图片地址
img_path = "TestFiles/000030.jpg"# 加载预训练模型
# conf	0.25	object confidence threshold for detection
# iou	0.7	intersection over union (IoU) threshold for NMS
model = YOLO(path, task='detect')
# model = YOLO(path, task='detect',conf=0.5)# 检测图片
results = model(img_path)
res = results[0].plot()
cv2.imshow("YOLOv8 Detection", res)
cv2.waitKey(0)

执行上述代码后,会将执行的结果直接标注在图片上,结果如下:
在这里插入图片描述

以上便是关于此款安全帽检测系统的原理与代码介绍。基于此模型,博主用pythonPyqt5开发了一个带界面的软件系统,即文中第二部分的演示内容,能够很好的支持图片、视频及摄像头进行检测,同时支持检测结果的保存

关于该系统涉及到的完整源码、UI界面代码、数据集、训练代码、测试图片视频等相关文件,均已打包上传,感兴趣的小伙伴可以通过下载链接自行获取。


【获取方式】

关注下方名片G-Z-H:【阿旭算法与机器学习】,回复【软件】即可获取下载方式

本文涉及到的完整全部程序文件:包括python源码、数据集、训练代码、UI文件、测试图片视频等(见下图),获取方式见文末:
在这里插入图片描述

注意:该代码基于Python3.9开发,运行界面的主程序为MainProgram.py,其他测试脚本说明见上图。为确保程序顺利运行,请按照程序运行说明文档txt配置软件运行所需环境。

关注下方名片GZH:【阿旭算法与机器学习】,回复【软件】即可获取下载方式


结束语

以上便是博主开发的基于YOLOv8深度学习的安全帽目标检测系统的全部内容,由于博主能力有限,难免有疏漏之处,希望小伙伴能批评指正。
关于本篇文章大家有任何建议或意见,欢迎在评论区留言交流!

觉得不错的小伙伴,感谢点赞、关注加收藏哦!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/187905.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Git——使用Git进行程序开发

主要介绍个人开发提交记录的主要流程,包括以下内容: 索引- 提交的暂存区。查看工作的状态和内部变更。如何读取用于描述变更的已扩展统一diff格式。支持查询和交互的提交,修改提交。创建、显示和选择(切换)分支。切换…

婴儿专用洗衣机有必要买吗?宝宝洗衣机洗衣服

我们都知道刚出生的宝宝抵抗力较弱,很容易因为细菌感染然后生病,宝宝接触最多的就是衣服,我们在手洗的过程很难把衣服上的细菌清洗掉,而使用我们传统的洗衣机很容易造成细菌的第二次感染,很容易将宝宝的抵抗力弄得越来…

如何通过linux调用企业微信发送告警消息

一、前期准备 1、企业微信具备管理企业权限。 2、服务器有公网IP或者可以将本机端口通过net映射到公网。 二、通过脚本向企业微信发送消息 1、创建sh脚本用来发送消息。 vim 2.sh 注意:脚本中xxxx信息需要在企业微信管理后台获取。 #!/bin/bash # 设置企业…

2023年计网408

第33题 33.在下图所示的分组交换网络中,主机H1和H2通过路由器互连,2段链路的带宽均为100Mbps、 时延带宽积(即单向传播时延带宽)均为1000bits。若 H1向 H2发送1个大小为 1MB的文件,分组长度为1000B,则从H1开始发送时刻起到H2收到…

代码随想录刷题题Day2

刷题的第二天,希望自己能够不断坚持下去,迎来蜕变。😀😀😀 刷题语言:C / Python Day2 任务 977.有序数组的平方 209.长度最小的子数组 59.螺旋矩阵 II 1 有序数组的平方(重点:双指针…

将项目放到gitee上

参考 将IDEA中的项目上传到Gitee仓库中_哔哩哔哩_bilibili 如果cmd运行ssh不行的话,要换成git bash 如果初始化后的命令用不了,直接用idea项放右键,用git工具操作

XXL-Job详解(二):安装部署

目录 前言环境下载项目调度中心部署执行器部署 前言 看该文章之前,最好看一下之前的文章,比较方便我们理解 XXL-Job详解(一):组件架构 环境 Maven3 Jdk1.8 Mysql5.7 下载项目 源码仓库地址链接: https://github.…

前端对浏览器的理解

浏览器的主要构成 用户界面 - 包括地址栏、后退/前进按钮、书签目录等,也就是你所看到的除了用来显示你所请求页面的主窗口之外的其他部分。 浏览器引擎 - 用来查询及操作渲染引擎的接口。 渲染引擎 - 用来显示请求的内容&#…

某60区块链安全之薅羊毛攻击实战一学习记录

区块链安全 文章目录 区块链安全薅羊毛攻击实战一实验目的实验环境实验工具实验原理实验内容薅羊毛攻击实战一 实验步骤EXP利用 薅羊毛攻击实战一 实验目的 学会使用python3的web3模块 学会分析以太坊智能合约薅羊毛攻击漏洞 找到合约漏洞进行分析并形成利用 实验环境 Ubun…

JVM类加载与运行时数据区

目录 一、类加载器 jvm类的加载过程 第一阶段:加载 第二阶段:链接阶段 第三阶段:初始化阶段: 双亲委派机制 沙箱安全机制 运行时数据区 栈-Xss1m 堆 TLAB 逃逸分析 方法区 常量池中有什么 StringTable为什么要调整位…

VS Code C++可视化调试配置Natvis,查看Qt、STL变量内容

VS Code C可视化调试配置Natvis 使用GlobalVisualizersDirectory Windows下 C:\Users\YourName\.vscode\extensions\ms-vscode.cpptools-1.18.5-win32-x64\debugAdapters\vsdbg\bin\Visualizers\Linux下 ~\.vscode\extensions\ms-vscode.cpptools-1.18.5-win32-x64\debugAd…

Spring Cloud 原理(第一节)

一、百度百科 Spring Cloud是一系列框架的有序集合。它利用Spring Boot的开发便利性巧妙地简化了分布式系统基础设施的开发,如服务发现注册、配置中心、消息总线、负载均衡、断路器、数据监控等,都可以用Spring Boot的开发风格做到一键启动和部署。Spri…

实验五 C语言函数程序设计习题 (使用函数计算两点间的距离,请编写函数fun,使用函数输出字符矩阵,使用函数求最大公约数和最小公倍数)

1. 使用函数计算两点间的距离&#xff1a;给定平面任意两点坐标(x1,y1)和(x2,y2)&#xff0c;求这两点之间的距离(保留2位)小数。要求定义和调用dist(x1,y1,x2,y2)计算两点间的距离。坐标中两点坐标之间的距离公式如下&#xff1a; #include <stdio.h> #include <math…

1.ORB-SLAM3中如何保存多地图、关键帧、地图点到二进制文件中

1 保存多地图 1.1 为什么保存(视觉)地图 因为我们要去做导航&#xff0c;导航需要先验地图。因此需要保存地图供导航使用&#xff0c;下面来为大家讲解如何保存多地图。 1.2 保存多地图的主函数SaveAtlas 2051 mStrSaveAtlasToFile是配置文件中传递的参数&#xff1a; 这里我们…

ssh远程连接阿里云CentOS:修改为密码登录

文章目录 控制台添加密钥下载Xshell修改密码连接重启服务&#xff1a;重复Xshell使用密码登录 控制台添加密钥 会下载一个pem文件 下载Xshell 新建 通过public key登录 修改密码连接 passwd root然后输入你想要设置的密码两遍 cd /etc/ssh/ vi sshd_config将PasswordAuth…

[论文精读]利用大语言模型对扩散模型进行自我修正

本博客是一篇最新论文的精读&#xff0c;论文为UC伯克利大学相关研究者新近(2023.11.27)在arxiv上上传的《Self-correcting LLM-controlled Diffusion Models》 。 内容提要: 现有的基于扩散的文本到图像生成模型在生成与复杂提示精确对齐的图像时仍然存在困难,尤其是需要数值和…

生成对抗网络(DCGAN)手写数字生成

文章目录 一、前言二、前期工作1. 设置GPU&#xff08;如果使用的是CPU可以忽略这步&#xff09; 二、什么是生成对抗网络1. 简单介绍2. 应用领域 三、创建模型1. 生成器2. 判别器 四、定义损失函数和优化器1. 判别器损失2. 生成器损失 五、定义训练循环六、训练模型七、创建 G…

“前端八股文背诵版“,终于整理完了,堪称最强!

随着互联网的快速发展&#xff0c;前端开发领域成为了IT行业中的热门领域之一。很多求职者都希望能够进入这个领域&#xff0c;但是面对着如此激烈的竞争&#xff0c;很多人都感到无从下手。为了帮助大家更好地掌握前端开发的相关知识&#xff0c;小编整理了一份前端面试题合集…

单片机怎么实现真正的多线程?

单片机怎么实现真正的多线程? 不考虑多核情况时&#xff0c;CPU在一个时间点只能做一件事&#xff0c;因为切换的速度快所以看起来好像是同时执行多个线程而已。 实际上就是用定时器来做时基&#xff0c;以时间片的方式分别执行来实现的&#xff0c;只不过实现起来细节比较复…

网络安全应急响应-Server2228(环境+解析)

网络安全应急响应 任务环境说明: 服务器场景:Server2228(开放链接)用户名:root,密码:p@ssw0rd123