ChatGPT学python——制作自己的AI模型(一)初步了解

前言

在这里插入图片描述
「作者主页」:雪碧有白泡泡
「个人网站」:雪碧的个人网站
「推荐专栏」

java一站式服务
前端炫酷代码分享
uniapp-从构建到提升
从0到英雄,vue成神之路
解决算法,一个专栏就够了
架构咱们从0说
★ 数据流通的精妙之道★

请添加图片描述

文章目录

  • 前言
  • 引言
  • Chatgpt简介
    • ChatGPT是什么
    • ChatGPT的原理
    • ChatGPT能做什么
  • 用ChatGPT学Python
    • 讲解知识点
        • 示例一
        • 示例二
    • 编写代码
    • 调试debug
  • 小结

引言

通过【ChatGPT学puthon】我们可以掌握

  • 了解ChatGPT的原理,用法以及应用场景
  • 利用ChatGPT辅助python的学习和开发
  • 掌握如何在自己的程序中接入ChatGPT
    在这里插入图片描述

Chatgpt简介

在使用ChatGPT之前,我们先来了解一下关于它的一些基本信息

ChatGPT是什么

ChatGPT是由OpenAI公司于2022年11月推出的一个个基于大型语言模型的人工智能聊天机器人应用
关于它的更多情况,我们就直接让它来自我介绍吧

ChatGPT是一个基于Transformer模型的聊天生成模型,由OpenAI开发。它是GPT(GenerativePre-trained Transformer)系列模型的一部分,旨在进行自然语言交互和对话生成。

GPT模型使用了Transformer架构,这是一种基于自注意力机制的深度神经网络模型。通过预训练大规模的语料库数据,GPT模型可以学习到语言的统计结构和语义表示,并且能够生成连贯、有逻辑性的文本。

ChatGPT是针对对话任务进行微调的GPT模型变体。与传统的单向语言模型不同,ChatGPT被设计用于生成有上下文依赖的回复,使其更适合进行对话和聊天交互。通过与用户的迭代交互,ChatGPT可以理解用户输入并产生连贯的响应。

需要注意的是,作为一个AI模型,ChatGPT具有其局限性。它的回答是基于已有的训练数据和模型的理解,可能存在错误或不准确的情况。此外,ChatGPT没有真实的理解能力,它只是根据模式匹配和训练数据生成回答。
在这里插入图片描述

ChatGPT的原理

因为ChatGPT具备检索信息和智能生成人类语言的能力,再加上它内部有庞大的知识资料库。所以,当人们需要查找某些信息时,可以直接问ChatGPT询问,而无法像过去一样通过网络搜索,查找文献等方式得到答案,这很可能会颠覆当前的搜索引擎,成为人们获取信息的新方式
下面同样用 ChatGPT来了解一下自身的实现原理

ChatGPT是一种基于深度学习的自然语言处理模型,其原理主要基于一种称为转换器(Transformer)的神经网络架构。下面是ChatGPT的主要原理:

  1. 转换器(Transformer)架构:ChatGPT使用了转换器作为其核心模型架构。转换器主要由编码器和解码器组成,它们都由多个堆叠的自注意力机制与前馈神经网络层组成。

  2. 自注意力机制(Self-Attention):自注意力机制是转换器中的关键组件。它允许模型在输入序列中的每个位置上对其他位置进行加权聚合,以获取全局上下文信息。通过计算查询、键和值之间的相关性来实现这种加权聚合。

  3. 预训练与微调:ChatGPT使用了预训练和微调两个阶段。在预训练阶段,模型通过大规模的无监督数据集进行训练,以学习语言的统计模式和语义信息。在微调阶段,模型会在特定的任务上进行有监督的训练,如对话生成,以使模型更好地适应特定任务的要求。

  4. 生成策略:ChatGPT使用了基于概率分布的采样方法来生成响应。常见的方法包括贪婪搜索(选择概率最高的单词)和束搜索(保留几个最有可能的候选词)。这些生成策略可以平衡生成的多样性和准确性。

  5. 序列到序列学习:ChatGPT将对话生成任务建模为一个序列到序列学习问题,其中输入是对话历史(包括先前的对话内容和系统提示),输出是生成的响应。训练过程中使用的目标函数通常是交叉熵损失函数。

  6. 上下文编码:为了处理上下文信息,ChatGPT通过将对话历史进行编码来获得表示。可以使用不同的编码策略,如简单的拼接或使用特定的分隔符进行分割。

总的来说,ChatGPT利用深度学习技术和转换器架构来从大规模数据中学习语言模式,并通过预训练和微调来适应特定的对话生成任务。它通过自注意力机制实现全局上下文建模,并使用生成策略来生成适当的响应。
在这里插入图片描述

ChatGPT能做什么

我们来问问ChatGPT自身能做些什么呢

ChatGPT 可以应用于多种场景,包括但不限于以下几个方面:

  1. 客户服务:ChatGPT 可以扮演虚拟客服代表的角色,回答用户的问题、提供支持和解决常见问题。它可以处理一系列常见的客户询问,为用户提供即时帮助。

  2. 智能助理:ChatGPT 可以被用作个人助理,回答日常生活中的问题,例如天气查询、日历安排、提醒事项等。它可以与用户进行对话,并提供所需的信息和指导。

  3. 教育辅助:ChatGPT 可以用于教育领域,作为学习伙伴和知识咨询工具。它可以回答学生的问题,解释概念,提供学习资源和建议。

  4. 内容生成:ChatGPT 可以用于生成各种类型的内容,如新闻文章、博客帖子、故事情节等。它可以根据用户的输入或特定要求来生成相关的文本内容。

  5. 社交互动:ChatGPT 可以在社交媒体平台上与用户进行互动,回答问题、提供建议、参与讨论等。它可以模拟人类对话,增加用户参与度和互动体验。

请注意,尽管 ChatGPT 可以在许多场景中发挥作用,但它仍然是一个 AI
模型,存在一些限制。在处理重要或敏感信息时,确保适当的安全措施和人工审核过程是至关重要的。
在这里插入图片描述

用ChatGPT学Python

ChatGPT的能力远不止对于语言文字的处理,它甚至可以对代码进行理解和生成,这得益于它丰富的知识库和它背后强大的神经网络系统

讲解知识点

是用ChatGPT辅助Python学习的最直接的方式,就是让它对Python的知识点进行讲解

示例一

讲解python的基础语法

  1. 注释:
    在Python中,使用井号(#)表示单行注释,用于在代码中添加注释说明。例如:

    # 这是一个单行注释
    

    若要添加多行注释,可以使用三引号(‘’’ ‘’')或三个双引号(“”" “”")。例如:

    '''
    这是一个多行注释
    可以写入多行内容
    '''
    
  2. 变量与数据类型:
    在Python中,您可以直接声明变量并为其赋值,不需要指定其数据类型。

    # 声明变量并赋值
    message = "Hello, World!"
    number = 42
    pi = 3.14# 打印变量的值
    print(message)
    print(number)
    print(pi)
    
  3. 输入与输出:
    使用print()函数可以将数据输出到终端。使用input()函数获取用户输入。

    # 获取用户输入
    name = input("请输入您的名字: ")# 输出欢迎消息
    print("你好," + name + "!")
    
  4. 条件语句:
    使用if语句执行条件判断。根据条件的真假,决定执行不同的代码块。

    # 条件判断示例
    x = 10if x > 0:print("x 是正数")
    elif x < 0:print("x 是负数")
    else:print("x 是零")
    
  5. 循环语句:
    使用for循环和while循环可以重复执行一段代码块。

    # for 循环示例
    fruits = ["apple", "banana", "orange"]for fruit in fruits:print(fruit)# while 循环示例
    count = 0while count < 5:print("Count:", count)count += 1
    
  6. 函数:
    使用def关键字定义函数,并在需要时调用函数。

    # 定义函数
    def greet(name):print("Hello, " + name + "!")# 调用函数
    greet("Alice")
    greet("Bob")
    

示例二

讲解python的正则表达式

下面是一些常用的正则表达式操作:

  1. 导入re模块:
import re
  1. 匹配模式:
  • re.match(pattern, string):尝试从字符串的起始位置匹配模式。
  • re.search(pattern, string):扫描整个字符串查找匹配模式。
  • re.findall(pattern, string):返回字符串中所有匹配模式的非重叠列表。
  • re.finditer(pattern, string):返回一个迭代器,包含所有匹配模式的迭代对象。

例如,以下是一个简单的例子,演示如何使用正则表达式来查找数字:

import restring = "I have 3 apples and 5 oranges."
pattern = r'\d+'result = re.findall(pattern, string)
print(result)  # 输出: ['3', '5']
  1. 替换模式:
  • re.sub(pattern, replacement, string):将匹配模式的所有出现替换为指定的字符串。

以下是一个替换的例子,将字符串中的所有空格替换为逗号:

import restring = "Hello   World!"
pattern = r'\s+'
replacement = ','result = re.sub(pattern, replacement, string)
print(result)  # 输出: "Hello,World!"
  1. 分割字符串:
  • re.split(pattern, string):根据匹配模式分割字符串,并返回分割后的子字符串列表。

以下是一个例子,使用正则表达式将字符串按照非字母字符分割为单词列表:

import restring = "Hello, World! How are you?"
pattern = r'\W+'  # 非字母字符result = re.split(pattern, string)
print(result)  # 输出: ['Hello', 'World', 'How', 'are', 'you']

编写代码

除了讲解知识点以外,ChatGPT可以直接提供代码片段帮助我们学习
下面让ChatGPT给出“猜数字”的游戏pythono代码

import randomdef guess_number():secret_number = random.randint(1, 100)attempts = 0while True:user_guess = int(input("请输入一个数字(1-100):"))attempts += 1if user_guess < secret_number:print("太小了,请再试一次!")elif user_guess > secret_number:print("太大了,请再试一次!")else:print(f"恭喜你,你猜对了!答案是{secret_number}。你用了{attempts}次尝试。")breakguess_number()

运行一下:完全正确
在这里插入图片描述

调试debug

我们在学习过程中,会遇到许多无法发现的debug,我们可以交给ChatGPT进行改正或者优化,这时我们就要准备一段错误代码,并交给ChatGPT进行优化改正
例如

好的,以下是一个常见的 Python 错误代码和对应的修正方法:

错误代码: python print("Hello, World!'

错误信息: SyntaxError: EOL while scanning string literal

修正方法: 上述错误是因为 print 语句中的字符串没有正确关闭引号。在这种情况下,您可以通过添加缺失的引号来修复该错误。

修正后的代码: python print("Hello, World!")

修正后的代码中,我补全了最后一个引号,确保字符串被正确地闭合。这样就解决了 SyntaxError 错误。

小结

通过以上例子可以看出,ChatGPT可以在学习python中起到很大辅助作用,相当于有了一个专属的智能助教,让学习者事半功倍,因为特殊原因,很多人可能无法访问ChatGPT,我给出一个AI网站镜像让大家体验一下更好的学习python
点击链接
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/18641.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

大数据课程E1——Flume的概述

文章作者邮箱&#xff1a;yugongshiyesina.cn 地址&#xff1a;广东惠州 ▲ 本章节目的 ⚪ 了解Ganglia的概念&#xff1b; ⚪ 了解Ganglia的拓扑结构和执行流程&#xff1b; ⚪ 掌握Ganglia的安装操作&#xff1b; 一、简介 1. 概述 1. Flume原本是由Cloude…

【华为HCIP | 高级网络工程师】刷题日记(11)

个人名片&#xff1a; &#x1f43c;作者简介&#xff1a;一名大二在校生&#xff0c;喜欢编程&#x1f38b; &#x1f43b;‍❄️个人主页&#x1f947;&#xff1a;落798. &#x1f43c;个人WeChat&#xff1a;见文末 &#x1f54a;️系列专栏&#xff1a;&#x1f5bc;️ 零…

数据结构和算法入门(时间/空间复杂度介绍--java版)

数据结构和算法入门&#xff08;时间/空间复杂度介绍–java版&#xff09; write in front 作者&#xff1a; 向大佬学习 专栏&#xff1a; 数据结构&#xff08;java版&#xff09; 作者简介&#xff1a;大二学生 希望能学习其同学和大佬的经验&#xff01; 本篇博客简介&…

微信小程序页面传值为对象[Object Object]详解

微信小程序页面传值为对象[Object Object]详解 1、先将传递的对象转化为JSON字符串拼接到url上2、在接受对象页面进行转译3、打印结果 1、先将传递的对象转化为JSON字符串拼接到url上 // info为对象 let stationInfo JSON.stringify(info) uni.navigateTo({url: /pages/statio…

jenkins自定义邮件发送人姓名

jenkins发送邮件的时候发送人姓名默认的&#xff0c;如果要自定义发件人姓名&#xff0c;只需要修改如下信息即可&#xff1a; 系统管理-system-Jenkins Location下的系统管理员邮件地址 格式为&#xff1a;自定义姓名<邮件地址>

VMware虚拟机安装Linux教程(超详细)

一、安装 VMware 官方正版VMware下载&#xff08;16 pro&#xff09;&#xff1a;https://www.aliyundrive.com/drive/file/backup/64c9fa3c132e0d42c60d489c99f3f951ef112ad5 下载Linux系统镜像&#xff08;阿里云盘不限速&#xff09;&#xff1a;https://www.aliyundrive.c…

CCL 2023 电信网络诈骗案件分类评测-第一名方案

1 任务内容 1.1 任务背景 2022年12月1日起&#xff0c;新出台的《反电信网络诈骗犯罪法》正式施行&#xff0c;表明了我国治理当前电信网络诈骗乱象的决心。诈骗案件分类问题是打击电信网路诈骗犯罪过程中的关键一环&#xff0c;根据不同的诈骗方式、手法等将其分类&#xff…

tp-link端口映射设置教程及快解析内网穿透

通常情况下&#xff0c;我们希望互联网的其他用户访问到我们本地局域网内部的一台服务器、监控……等设备或应用&#xff0c;就要在本地路由器或防火墙的出接口/路由器WAN口 上做端口映射&#xff0c;将内部局域网某台计算机的私网IP&#xff0c;如&#xff1a;192.168.1.101 内…

手写一个锁其实也很easy

懵逼的状态&#xff1a; 面试中经常被问到&#xff0c;如何手写一个锁&#xff0c;很多时候一脸懵逼&#xff0c;不知所措&#xff0c;多少年前深有体会&#xff0c;然而回过头来细细分析&#xff0c;只需使用AtomicReference类 即可以轻松搞定。首先咱们先来了解一下Atomi…

数据截断、频谱泄漏与窗函数的选择

目录 数据截断、频谱泄漏与窗函数的选择 什么是频谱泄漏&#xff1f; 解决频谱泄漏问题的方法 主瓣和旁瓣 窗函数介绍 窗函数解决频谱泄漏问题的原理 窗函数的种类、特点和如何使用 1、矩形窗 2、三角窗 3、汉宁窗 4、海明窗 5、布莱克曼窗 6、巴特窗&#xff1a;…

opencv 31-图像平滑处理-方框滤波cv2.boxFilter()

方框滤波&#xff08;Box Filtering&#xff09;是一种简单的图像平滑处理方法&#xff0c;它主要用于去除图像中的噪声和减少细节&#xff0c;同时保持图像的整体亮度分布。 方框滤波的原理很简单&#xff1a;对于图像中的每个像素&#xff0c;将其周围的一个固定大小的邻域内…

MySQL安装 找不到 MSVCP100.dll

安装mysql5.6.51时&#xff0c;出现由于找不到 MSVCP100.dll&#xff0c;无法继续执行代码。重新安装程序可能会解决此问题。 这应该是缺少VS运行库文件导致的&#xff0c;运行库就是支持大部分程序运行的基础&#xff0c;由于很多常用软件都是采用 Microsoft Visual Studio 编…

刷题笔记 day2

力扣 1089 复写零 思路&#xff1a;双指针 第一步&#xff1a;利用指针 cur 去记录最后一位要复写的数 &#xff0c; 利用指针 dest 指向最后一位数所要复写的位置&#xff1b; 实现过程&#xff1a;最开始 cur 指向0&#xff0c;dest 指向 -1 &#xff0c; 当arr[cur] ! …

【UEC++学习】UE网络 - Replication、RPC

1. UE网络架构 &#xff08;1&#xff09;UE的网络架构是SC&#xff08;Server - Client&#xff09;的模式&#xff0c;这种模式的优势&#xff1a;这种模式让所有客户端都在服务器端进行安全验证&#xff0c;这样可以有效的防止客户端上的作弊问题。 &#xff08;2&#xff…

Python(五十六)列表元素的排序操作

❤️ 专栏简介&#xff1a;本专栏记录了我个人从零开始学习Python编程的过程。在这个专栏中&#xff0c;我将分享我在学习Python的过程中的学习笔记、学习路线以及各个知识点。 ☀️ 专栏适用人群 &#xff1a;本专栏适用于希望学习Python编程的初学者和有一定编程基础的人。无…

数据结构初阶--栈和队列

目录 一.栈 1.栈的定义 2.顺序栈的功能实现 2.1.顺序栈的定义 2.2.顺序栈的初始化 2.3.顺序栈的判空 2.4.顺序栈的入栈 2.5.顺序栈的出栈 2.6.顺序栈的取栈顶元素 2.7.顺序栈的求栈的大小 2.8.顺序栈的销毁 2.9.完整程序 Stack.h Stack.c test.c 二.队列 1.队…

使用 Docker Compose 部署 Redis Cluster 集群,轻松搭建高可用分布式缓存

Redis Cluster&#xff08;Redis 集群&#xff09;是 Redis 分布式解决方案的一部分&#xff0c;它旨在提供高可用性、高性能和横向扩展的功能。Redis Cluster 能够将多个 Redis 节点组合成一个分布式集群&#xff0c;实现数据分片和负载均衡&#xff0c;从而确保在大规模应用场…

session反序列化+SoapClientSSRF+CRLF

文章目录 session反序列化SoapClientSSRFCRLF前言bestphps revengecall_user_func()方法的特性SSRFCRLF组合拳session反序列化 解题步骤总结 session反序列化SoapClientSSRFCRLF 前言 从一道题分析通过session反序列化出发SoapClientSSRF利用CRLF解题 bestphp’s revenge 首…

基于方向编码的模板匹配算法matlab仿真

目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 5.算法完整程序工程 1.算法运行效果图预览 2.算法运行软件版本 MATLAB2022a 3.部分核心程序 ........................................................................... %选择移动个…

自适应巡航控制系统研究(Matlab代码实现)

目录 &#x1f4a5;1 概述 &#x1f4da;2 运行结果 &#x1f389;3 参考文献 &#x1f468;‍&#x1f4bb;4 Matlab代码 &#x1f4a5;1 概述 据统计, 我国交通事故造成的伤亡人数每年超过10万人, 其中驾驶员人为原因 (疲劳、酒驾、误操作等) 所致事故逐渐升高.汽车交通…