Linux中的fork()函数的面试题目

1.面试题目1

(1)fork 以后,父进程打开的文件指针位置在子进程里面是否一样?(先open再fork)
(2)能否用代码简单的验证一下?
(3)先fork再打开文件父子进程是否共享偏移量?父进程打开的文件指针位置在子进程里面是否一样?能否用代码简单验证一下.(先fork再open会怎么样?)

1).进程打开文件的流程

inode:

文件数据都储存在”块”中,那么很显然,我们还必须找到一个地方储存文件的元信息,比如文件的创建者、文件的创建日期、文件的大小等等。这种储存文件元信息的区域就叫做inode,中文译名为”索引节点”。

每一个文件都有对应的inode,里面包含了与该文件有关的一些信息。通过这个inode节点,即通过文件具体的一些信息,我们才能找到这个文件,读取它.

每个inode都有一个号码,操作系统用inode号码来识别不同的文件。

2).先打开再fork的流程(重点)  

代码如下:

先创建一个文件file.txt,内容为abcdefg;

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <fcntl.h>
#include <assert.h>int main()
{int fd=open("file.txt",O_RDONLY);assert(fd!=-1);pid_t pid=fork();assert(pid!=-1);if(pid==0){char buff[128]={0};int n=read(fd,buff,1);printf("child:%s\n",buff);sleep(1);n=read(fd,buff,1);printf("child:%s\n",buff);}else{char buff[128]={0};int n=read(fd,buff,1);printf("parent:%s\n",buff);sleep(1);n=read(fd,buff,1);printf("parent:%s\n",buff);}close(fd);exit(0);
}

父进程打开文件以后,fork产生子进程,父子进程共享打开的文件,同时共享文件偏移量;

为什么?如图:

3).先fork再open

代码修改如下:

 pid_t pid=fork();assert(pid!=-1);int fd=open("file.txt",O_RDONLY);assert(fd!=-1);

(了解文件偏移量不共享)

为什么?如图:

面试题答案:

(1)在fork 之前打开的文件,在复制进程后,父子进程共享文件偏移量,所以文件指针在相同位置。

(2)代码如上

(3)先fork再打开文件,父子进程各自打开各自的,不共享偏移量;代码如上。

2.面试题目2

4).系统调用与库函数的区别

比如自己写的函数,调用的时候就是调换到函数的入口地址一句一句执行,但是系统调用就不一样,系统调用一旦执行,我们就需要 从用户空间切换到内核空间.
比如fopen :库函数 open:系统调用 fork:系统调用
可以man fopen (显示3),man  2 open (显示2),man  fork (显示2)

系统调用的执行过程:

在Linux中,每个系统调用都被赋予了一个系统调用号.这样,通过这个独一无二的号就可以关联系统调用.当用户空间的进程执行一个系统调用的时候,这个系统调用号就用来指明到底是要执行哪个系统调用号;进程并不会提及系统调用的名称;

系统调用是为了方便使用操作系统的接口,而库函数则是为了人们编程的方便;
库函数调用与系统无关,不同的系统,调用库函数,库函数会调用不同的底层函数实现,因此可移植性好;

5).malloc和free的三个问题:

思考下面三个问题:

(1)申请了一块空间没有free,进程就结束了,那么空间被回收了吗?
(2)malloc()申请3G的内存能否成功?判断依据是什么?

(3)父进程堆区申请的空间复制后,子进程也会有一份,也需要释放?

演示代码:

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <assert.h>
#include <string.h>int main()
{char *s=(char *)malloc(1024ll*1024*1024*3);assert(s!=NULL);memset(s,0,1024ll*1024*1024*3);printf("main over!\n");exit(0);
}

1.进程在执行的过程中,malloc申请空间,不使用时,没有free就会出现内存泄漏;
如果进程结束了,那么所有向操作系统申请的内存都会被回放(释放);

2.申请1G或者更大空间,到底能不能成功?
如果当前的物理内存剩余空间够用,那么申请的空间肯定能成功;

如果不够用,我们先要看有没有虚拟内存,如果没有,不能成功;如果有虚拟内存,那么我们看内存+虚拟空间的大小能否满足,如果满足,那么我们是可以申请成功的,如果不够,当然不能成功;

首先我们需要了解一个名词:虚拟内存:

基于分页技术或者分页和分段技术的组合的虚拟内存,是现代计算机中内存管理最常用的方法之一.虚拟内存对应用程序完全透明,使得每个进程在执行时好像有无限的内存可用.为实现这一点,操作系统为每个进程在磁盘上创建一块虚拟地址空间,即虚拟内存.在需要的时候可以把部分虚拟内存载入到正在的内存中.这样,多个进程便可以共享相对比较小的内存.为了使虚拟内存载入到真正的内存中.这样,多个进程便可以共享相对比较小的内存.为了使虚拟内存更为有效,需要硬件机制来执行基本的分页和分段功能,如虚拟地址和实地址之间的地址转换.

虚拟内存提供的三个重要的能力:
1) 它将主存看成是一个存储在磁盘上的地址空间的高速缓存,在主存中只保存活动区域,根据需要在磁盘和主存之间来回传送数据,使得能够运行比内存大的多的进程。
2) 它为每个进程提供了一致的地址空间,从而简化了存储器管理.
3) 它保护每个进程的地址空间不被其他进程破坏 .

<<深入理解计算机系统>>580页:(由此可知2,3)

了解两个命令:
sudo swapoff -a;关闭虚拟内存;
sudo swapon -a;开启虚拟内存;

若是32位系统,申请3G空间一定会失败,因为32位系统的用户总空间大小为3G.

 

(3)父进程堆区申请的空间复制后,子进程是不是也会有一份?是不是也需要释放?

我们先来看下面的代码:

#include <stdio.h>
#include <assert.h>
#include <unistd.h>
#include <stdlib.h>
int main()
{char *s=(char *)malloc(128);assert(s!=NULL);pid_t pid=fork();assert(pid!=-1);free(s);exit(0);
}

编译运行并没有出错,如果是共享空间的话, 那么父子进程会对一个空间分别free,我们有前面学过的C语言可以知道,如果我们对一个空间free两次,编译运行会出现错误.

所以父子进程堆空间不共享(这里指的是每个进程的堆空间).哪怕父子进程对申请的对空间都没有操作.

其实如果对空间操作也是没有问题的,如下:

#include <stdio.h>
#include <assert.h>
#include <unistd.h>
#include <stdlib.h>
#include <string.h>  //1
int main()
{char *s=(char *)malloc(128);assert(s!=NULL);pid_t pid=fork();assert(pid!=-1);if(pid==0)//2{strcpy(s,"child");//3}else  //4{strcpy(s,"parent");//5}printf("s=%s\n",s); //6free(s);exit(0);
}

结论:

父进程堆区申请的空间复制后,子进程也有一份.也需要释放;也就是说,fork会把进程的上下文都复制一遍,如果是malloc申请的话,内核会给子进程分配和父进程一样多的空间,父子进程都需要分别free;

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/186083.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

代理模式 1、静态代理 2、动态代理 jdk自带动态代理 3、Cglib代理

文章目录 代理模式1、静态代理2、动态代理jdk自带动态代理 3、Cglib代理 来和大家聊聊代理模式 代理模式 代理模式&#xff1a;即通过代理对象访问目标对象&#xff0c;实现目标对象的方法。这样做的好处是&#xff1a;可以在目标对象实现的基础上&#xff0c;增强额外的功能操…

【Openstack Train安装】八、placement安装

Placement 肩负着这样的历史使命&#xff0c;最早在 Newton 版本被引入到 openstack/nova repo&#xff0c;以 API 的形式进行孵化&#xff0c;所以也经常被称呼为 Placement API。它参与到 nova-scheduler 选择目标主机的调度流程中&#xff0c;负责跟踪记录 Resource Provide…

java学校高校运动会报名信息管理系统springboot+jsp

课题研究方案&#xff1a; 结合用户的使用需求&#xff0c;本系统采用运用较为广泛的Java语言&#xff0c;springboot框架&#xff0c;HTML语言等关键技术&#xff0c;并在idea开发平台上设计与研发创业学院运动会管理系统。同时&#xff0c;使用MySQL数据库&#xff0c;设计实…

五种多目标优化算法(MOPSO、MOAHA、NSGA2、NSGA3、MOGWO)求解微电网多目标优化调度(MATLAB)

一、多目标优化算法简介 &#xff08;1&#xff09;多目标粒子群优化算法MOPSO 多目标应用&#xff1a;基于多目标粒子群优化算法MOPSO求解微电网多目标优化调度&#xff08;MATLAB代码&#xff09;-CSDN博客 &#xff08;2&#xff09;多目标人工蜂鸟算法&#xff08;MOAHA…

nexus制品库的介绍及详细部署使用

一、nexus 介绍 Nexus 是一个强大的仓库管理工具&#xff0c;用于管理和分发 Maven、npm、Docker 等软件包。它提供了一个集中的存储库&#xff0c;用于存储和管理软件包&#xff0c;并提供了版本控制、访问控制、构建和部署等功能。 Nexus 可以帮助开发团队提高软件包管理的效…

【Linux】cd 命令使用

cd&#xff08;英文全拼&#xff1a;change directory&#xff09;命令用于改变当前工作目录的命令&#xff0c;切换到指定的路径。 ~ 也表示为 home 目录 的意思。. 则是表示目前所在的目录。.. 则表示目前目录位置的上一层目录。 语法 cd [目录] 命令选项及作用 执行令 …

C++——AVL树

作者&#xff1a;几冬雪来 时间&#xff1a;2023年11月30日 内容&#xff1a;C板块AVL树讲解 目录 前言&#xff1a; AVL树与搜索二叉树之间的关系&#xff1a; AVL树概念&#xff1a; 插入结点&#xff1a; 平衡因子&#xff1a; 旋转&#xff1a; 双旋&#xff1a; …

基于SpringBoot母婴商城

摘 要 现代经济快节奏发展以及不断完善升级的信息化技术&#xff0c;让传统数据信息的管理升级为软件存储&#xff0c;归纳&#xff0c;集中处理数据信息的管理方式。本母婴商城系统就是在这样的大环境下诞生&#xff0c;其可以帮助管理者在短时间内处理完毕庞大的数据信息&am…

网络基础『发展 ‖ 协议 ‖ 传输 ‖ 地址』

&#x1f52d;个人主页&#xff1a; 北 海 &#x1f6dc;所属专栏&#xff1a; 神奇的网络世界 &#x1f4bb;操作环境&#xff1a; CentOS 7.6 阿里云远程服务器 文章目录 &#x1f324;️前言&#x1f326;️正文1.网络发展1.1.背景1.2.类型 2.网络协议2.1.什么是协议2.2.协议…

SpringCloud核心组件

Eureka 注册中心&#xff0c;服务的注册与发现 Feign远程调用 Ribbon负载均衡&#xff0c;默认轮询 Hystrix 熔断 降级 Zuul微服务网关&#xff08;这个组件负责网络路由&#xff0c;可以做统一的降级、限流、认证授权、安全&#xff09; Eureka 微服务的功能主要有以下几…

算法通关村第六关—序列恢复二叉树(青铜)

根据序列恢复二叉树 示例 给定序列恢复二叉树(1)前序&#xff1a;1 2 3 4 5 6 8 7 9 10 11 12 13 15 14(2)中序&#xff1a;3 4 8 6 7 5 2 1 10 9 11 15 13 14 123)后序&#xff1a;8 7 6 5 4 3 2 10 15 14 13 12 11 9 1 一、前中序列恢复二叉树 (1)前序&#xff1a;1 2 3…

电商营销场景的RocketMQ实战01-RocketMQ原理

架构图 Broker主从架构与集群模式 RocketMQ原理深入剖析 Broker主从架构原理 HAConnection与HAClient Broker基于raft协议的主从架构 Consumer运行原理 基础知识 001_RocketMQ架构设计与运行流程分析 RocketMQ这一块&#xff0c;非常关键的一个重要的技术&#xff0c;面试的时候…

高级IO select 多路转接实现思路

文章目录 select 函数fd_set 类型timeval 结构体select 函数的基本使用流程文件描述符就绪条件以select函数为中心实现多路转接的思路select 缺陷 select 函数 int select(int nfds, fd_set *readfds, fd_set *writefds, fd_set *exceptfds, struct timeval *timeout); selec…

PlantUML语法(全)及使用教程-时序图

目录 1. 参与者1.1、参与者说明1.2、背景色1.3、参与者顺序 2. 消息和箭头2.1、 文本对其方式2.2、响应信息显示在箭头下面2.3、箭头设置2.4、修改箭头颜色2.5、对消息排序 3. 页面标题、眉角、页脚4. 分割页面5. 生命线6. 填充区设置7. 注释8. 移除脚注9. 组合信息9.1、alt/el…

MySQL三大日志详细总结(redo log undo log binlog)

MySQL日志 包括事务日志&#xff08;redolog undolog&#xff09;慢查询日志&#xff0c;通用查询日志&#xff0c;二进制日志&#xff08;binlog&#xff09; 最为重要的就是binlog&#xff08;归档日志&#xff09;事务日志redolog&#xff08;重做日志&#xff09;undolog…

MySQL备份与恢复(重点)

MySQL备份与恢复&#xff08;重点&#xff09; 一、用户管理与权限管理 ☆ 用户管理 1、创建MySQL用户 注意&#xff1a;MySQL中不能单纯通过用户名来说明用户&#xff0c;必须要加上主机。如jack10.1.1.1 基本语法&#xff1a; mysql> create user 用户名被允许连接的主…

ssm+vue的仓库在线管理系统的设计与实现(有报告)。Javaee项目,ssm vue前后端分离项目。

演示视频&#xff1a; ssmvue的仓库在线管理系统的设计与实现&#xff08;有报告&#xff09;。Javaee项目&#xff0c;ssm vue前后端分离项目。 项目介绍&#xff1a; 采用M&#xff08;model&#xff09;V&#xff08;view&#xff09;C&#xff08;controller&#xff09;三…

建文工程项目管理软件 SQL 注入漏洞复现

0x01 产品简介 建文工程管理软件是一个适用于工程投资领域的综合型的多方协作平台。 0x02 漏洞概述 建文工程项目管理软件BusinessManger.ashx、Desktop.ashx等接口处存在SQL注入漏洞&#xff0c;攻击者可通过该漏洞获取数据库中的信息&#xff08;例如&#xff0c;管理员后台…

微信小程序体验版提交审核,提示接口未配置在app.json文件且无权限

在火狐浏览器 打开微信公众平台 发布小程序 弹窗一闪而过 是因为 放开这里就可以了

EI级 | Matlab实现TCN-BiLSTM-Multihead-Attention多头注意力机制多变量时间序列预测

EI级 | Matlab实现TCN-BiLSTM-Multihead-Attention多头注意力机制多变量时间序列预测 目录 EI级 | Matlab实现TCN-BiLSTM-Multihead-Attention多头注意力机制多变量时间序列预测预测效果基本介绍程序设计参考资料 预测效果 基本介绍 1.【EI级】Matlab实现TCN-BiLSTM-Multihead-…