基于YOLOv8深度学习的PCB板缺陷检测系统【python源码+Pyqt5界面+数据集+训练代码】目标检测

《博主简介》

小伙伴们好,我是阿旭。专注于人工智能AI、python、计算机视觉相关分享研究。
更多学习资源,可关注公-仲-hao:【阿旭算法与机器学习】,共同学习交流~
👍感谢小伙伴们点赞、关注!

《------往期经典推荐------》

一、AI应用软件开发实战专栏【链接】

项目名称项目名称
1.【人脸识别与管理系统开发】2.【车牌识别与自动收费管理系统开发】
3.【手势识别系统开发】4.【人脸面部活体检测系统开发】
5.【图片风格快速迁移软件开发】6.【人脸表表情识别系统】
7.【YOLOv8多目标识别与自动标注软件开发】8.【基于YOLOv8深度学习的行人跌倒检测系统】
9.【基于YOLOv8深度学习的PCB板缺陷检测系统】

二、机器学习实战专栏【链接】,已更新31期,欢迎关注,持续更新中~~
三、深度学习【Pytorch】专栏【链接】

《------正文------》

基本功能演示

在这里插入图片描述

摘要:PCB板缺陷检测在电子制造行业中具有重要的意义。随着电子产品的普及和需求的不断增长,对PCB板的质量和可靠性要求也越来越高。PCB板作为电子产品的核心组件,其质量直接影响到整个产品的性能和稳定性。因此,对PCB板进行缺陷检测是确保产品质量的关键步骤。本文基于YOLOv8深度学习框架训练一个进行PCB板缺陷检测的模型,开发了一款PCB板缺陷检测系统,可用于检测常见的6种PCB板缺陷。并结合pythonPyQT5实现了UI界面,更方便进行功能的展示。该软件支持图片视频以及摄像头进行PCB板缺陷检测,并保存缺陷检测结果。本文提供了完整的Python代码和使用教程,给感兴趣的小伙伴参考学习,完整的代码资源文件获取方式见文末

文章目录

  • 基本功能演示
  • 前言
  • 一、软件核心功能介绍及效果演示
    • 软件主要功能
    • (1)图片检测演示
    • (2)视频检测演示
    • (3)摄像头检测演示
    • (4)保存图片与视频检测结果
  • 二、模型的训练、评估与推理
    • 1.YOLOv8的基本原理
    • 2. 数据集准备与训练
    • 3. 训练结果评估
    • 4. 检测结果识别
  • 【获取方式】
  • 结束语

点击跳转至文末《完整相关文件及源码》获取


前言

PCB板缺陷检测在电子制造行业中具有重要的意义。随着电子产品的普及和需求的不断增长,对PCB板的质量和可靠性要求也越来越高。PCB板作为电子产品的核心组件,其质量直接影响到整个产品的性能和稳定性。因此,对PCB板进行缺陷检测是确保产品质量的关键步骤。

PCB板缺陷检测的应用场景非常广泛,主要包括以下几个方面:
工业生产:在PCB板的生产过程中,通过实时检测和识别各种缺陷类型,可以有效地提高生产效率和产品质量。同时,通过对缺陷数据的统计和分析,可以为生产过程提供优化建议,降低生产成本。
维修与维护:在电子产品的使用过程中,可能会出现PCB板损坏的情况。通过对损坏的PCB板进行缺陷检测,可以快速定位问题所在,为维修人员提供有效的参考信息,缩短维修周期。
质量控制:在PCB板的出厂检验环节,通过对PCB板进行缺陷检测,可以确保产品符合质量标准,提高客户满意度。此外,通过对历史缺陷数据的分析,可以发现潜在的质量问题,为企业的质量改进提供依据。
研发与设计:在PCB板的设计阶段,通过对设计方案进行缺陷预测和评估,可以在设计初期发现并解决潜在问题,提高产品的可靠性和性能。同时,通过对不同设计方案的缺陷比较,可以为设计师提供优化建议,提高设计水平。

博主通过搜集PCB板缺陷的相关数据图片,根据YOLOv8的目标检测技术,基于python与Pyqt5开发了一款界面简洁的PCB板缺陷检测系统,可以检测常见的6种PCB板缺陷。可支持图片、视频以及摄像头跌倒检测,同时可以将图片或者视频检测结果进行保存

软件基本界面如下图所示:
在这里插入图片描述

觉得不错的小伙伴,感谢点赞、关注加收藏!如果大家有任何建议或意见,欢迎在评论区留言交流!

一、软件核心功能介绍及效果演示

软件主要功能

1. 可用于检查常见的6种PCB板缺陷,缺陷分别为:【缺失孔、老鼠咬痕、开路、短路、毛刺、铜渣】;
2.支持图片、视频及摄像头进行PCB板缺陷检测,同时支持图片的批量检测
2. 界面可实时显示目标位置目标总数置信度用时等信息;
3. 支持图片或者视频检测结果保存

(1)图片检测演示

点击图片图标,选择需要检测的图片,或者点击文件夹图标,选择需要批量检测图片所在的文件夹,操作演示如下:
点击目标下拉框后,可以选定指定目标的结果信息进行显示。 点击保存按钮,会对视频检测结果进行保存,存储路径为:save_data目录下。
注:1.右侧目标位置默认显示置信度最大一个目标位置。所有检测结果均在左下方表格中显示。
单个图片检测操作如下:
在这里插入图片描述

批量图片检测操作如下:
在这里插入图片描述

(2)视频检测演示

点击视频图标,打开选择需要检测的视频,就会自动显示检测结果。点击保存按钮,会对视频检测结果进行保存,存储路径为:save_data目录下。
在这里插入图片描述

(3)摄像头检测演示

点击摄像头图标,可以打开摄像头,可以实时进行检测,再次点击摄像头图标,可关闭摄像头。
在这里插入图片描述

(4)保存图片与视频检测结果

点击保存按钮后,会将当前选择的图片【含批量图片】或者视频的检测结果进行保存。检测的图片与视频结果会存储在save_data目录下。
在这里插入图片描述
在这里插入图片描述

二、模型的训练、评估与推理

1.YOLOv8的基本原理

YOLOv8是一种前沿的目标检测技术,它基于先前YOLO版本在目标检测任务上的成功,进一步提升了性能和灵活性。主要的创新点包括一个新的骨干网络、一个新的 Ancher-Free 检测头和一个新的损失函数,可以在从 CPU 到 GPU 的各种硬件平台上运行
其主要网络结构如下:
在这里插入图片描述

2. 数据集准备与训练

通过网络上搜集关于PCB缺陷的各类图片,并使用LabelMe标注工具对每张图片中的PCB缺陷目标边框(Bounding Box)与类型进行标注。一共包含683张图片,其中训练集包含544张图片验证集包含139张图片,部分图像及标注如下图所示。
在这里插入图片描述
在这里插入图片描述

图片数据的存放格式如下,在项目目录中新建datasets目录,同时将跌倒检测的图片分为训练集与验证集放入PCB_DATASET目录下。
在这里插入图片描述
同时我们需要新建一个data.yaml文件,用于存储训练数据的路径及模型需要进行检测的类别。YOLOv8在进行模型训练时,会读取该文件的信息,用于进行模型的训练与验证。data.yaml的具体内容如下:

train: E:\MyCVProgram\PCBDetection\datasets\PCB_DATASET\train  # train images (relative to 'path') 128 images
val: E:\MyCVProgram\PCBDetection\datasets\PCB_DATASET\val  # val images (relative to 'path') 128 images
test:  # val images (optional)# number of classes
nc: 6# Classes
names: ["missing_hole", "mouse_bite", "open_circuit", "short", "spur", "spurious_copper"]

注:train与val后面表示需要训练图片的路径,建议直接写自己文件的绝对路径。
数据准备完成后,通过调用train.py文件进行模型训练,epochs参数用于调整训练的轮数,batch参数用于调整训练的批次大小【根据内存大小调整,最小为1】,代码如下:

# 加载模型
model = YOLO("yolov8n.pt")  # 加载预训练模型
# Use the model
if __name__ == '__main__':# Use the modelresults = model.train(data='datasets/PCB_DATASET/data.yaml', epochs=250, batch=4)  # 训练模型# 将模型转为onnx格式# success = model.export(format='onnx')

3. 训练结果评估

在深度学习中,我们通常用损失函数下降的曲线来观察模型训练的情况。YOLOv8在训练时主要包含三个方面的损失:定位损失(box_loss)、分类损失(cls_loss)和动态特征损失(dfl_loss),在训练结束后,可以在runs/目录下找到训练过程及结果文件,如下所示:
在这里插入图片描述

各损失函数作用说明:
定位损失box_loss:预测框与标定框之间的误差(GIoU),越小定位得越准;
分类损失cls_loss:计算锚框与对应的标定分类是否正确,越小分类得越准;
动态特征损失(dfl_loss):DFLLoss是一种用于回归预测框与目标框之间距离的损失函数。在计算损失时,目标框需要缩放到特征图尺度,即除以相应的stride,并与预测的边界框计算Ciou Loss,同时与预测的anchors中心点到各边的距离计算回归DFLLoss。这个过程是YOLOv8训练流程中的一部分,通过计算DFLLoss可以更准确地调整预测框的位置,提高目标检测的准确性。
本文训练结果如下:
在这里插入图片描述

我们通常用PR曲线来体现精确率和召回率的关系,本文训练结果的PR曲线如下。mAP表示Precision和Recall作为两轴作图后围成的面积,m表示平均,@后面的数表示判定iou为正负样本的阈值。mAP@.5:表示阈值大于0.5的平均mAP,可以看到本文模型各类缺陷检测的mAP@0.5都达到了0.86以上,平均为0.92,结果还是很不错的。
在这里插入图片描述

4. 检测结果识别

模型训练完成后,我们可以得到一个最佳的训练结果模型best.pt文件,在runs/trian/weights目录下。我们可以使用该文件进行后续的推理检测。
图片检测代码如下:

# 所需加载的模型目录
path = 'models/best.pt'
# 需要检测的图片地址
img_path = "TestFiles/01_missing_hole_09.jpg"# 加载预训练模型
# conf	0.25	object confidence threshold for detection
# iou	0.7	intersection over union (IoU) threshold for NMS
model = YOLO(path, task='detect')
# model = YOLO(path, task='detect',conf=0.5)# 检测图片
results = model(img_path)
res = results[0].plot()
res = cv2.resize(res,dsize=None,fx=0.5,fy=0.5,interpolation=cv2.INTER_LINEAR)
cv2.imshow("YOLOv8 Detection", res)
cv2.waitKey(0)

执行上述代码后,会将执行的结果直接标注在图片上,结果如下:
在这里插入图片描述

以上便是关于此款PCB板缺陷检测系统的原理与代码介绍。基于此模型,博主用pythonPyqt5开发了一个带界面的软件系统,即文中第二部分的演示内容,能够很好的支持图片、视频及摄像头进行检测,同时支持检测结果的保存

关于该系统涉及到的完整源码、UI界面代码、数据集、训练代码、测试图片视频等相关文件,均已打包上传,感兴趣的小伙伴可以通过下载链接自行获取。


【获取方式】

关注下方名片G-Z-H:【阿旭算法与机器学习】,回复【软件】即可获取下载方式

本文涉及到的完整全部程序文件:包括python源码、数据集、训练代码、UI文件、测试图片视频等(见下图),获取方式见文末:
在这里插入图片描述

注意:该代码基于Python3.9开发,运行界面的主程序为MainProgram.py,其他测试脚本说明见上图。为确保程序顺利运行,请按照程序运行说明文档txt配置软件运行所需环境。

关注下方名片GZH:【阿旭算法与机器学习】,回复【软件】即可获取下载方式


结束语

以上便是博主开发的基于YOLOv8深度学习的PCB缺陷检测系统的全部内容,由于博主能力有限,难免有疏漏之处,希望小伙伴能批评指正
关于本篇文章大家有任何建议或意见,欢迎在评论区留言交流!

觉得不错的小伙伴,感谢点赞、关注加收藏哦!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/181722.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Android Studio Giraffe-2022.3.1-Patch-3安装注意事项

准备工作: android studio下载地址:https://developer.android.google.cn/studio/releases?hlzh-cn gradle下载地址:https://services.gradle.org/distributions/ 比较稳定的网络环境(比较android studio相关的依赖需要从谷歌那边…

Redis集群模式

Redis集群主要有三种模式 主从复制模式(Master-Slave)、哨兵模式(Sentinel)和Cluster模式 主从复制模式:适用于数据备份和读写分离场景,配置简单,但在主节点故障时需要手动切换。哨兵模式&…

Google分析中的基础概念

当提到Google分析时,我们通常指的是一种用于跟踪和分析网站和应用程序数据的工具。在使用Google分析之前,了解其基础概念对于正确配置和有效使用该工具非常重要。 1、帐户(Account):帐户是Google分析中的最高层级。一…

【网络安全】-安全常见术语介绍

文章目录 介绍1. 防火墙(Firewall)定义通俗解释 2. 恶意软件(Malware)定义通俗解释 3. 加密(Encryption)定义通俗解释 4. 多因素认证(Multi-Factor Authentication,MFA)定…

WordPress 外链跳转插件

WordPress 外链跳转插件是本站开发的一款WordPress插件,能对文中外链添加一层过滤,有效防止追踪,以及提醒用户。 类似于知乎、CSDN打开其他链接的提示。 后台可以设置白名单 学习资料源代码:百度网盘 密码:123

【飞桨星河社区五周年线下工坊-杭州站】

? 欢迎大家参加杭州极客工坊,深入了解大模型前沿技术和创新应用,一站式体验AI原生应用开发? 精彩议程敬请期待~ ? 时间:2023年12月3日 14:00-17:30 ? 地点:杭州西湖区花蒋路3号西溪润泽园度假酒店 ? 主题&#xf…

2021年1月12日 Go生态洞察:探索Go中泛型的提议

🌷🍁 博主猫头虎(🐅🐾)带您 Go to New World✨🍁 🦄 博客首页——🐅🐾猫头虎的博客🎐 🐳 《面试题大全专栏》 🦕 文章图文…

拼多多刷新Q3财报纪录,大涨18%股价直逼阿里

当多数人只关心拼多多速度的时候,拼多多却把步伐走的逐渐扎实。 11月28日,拼多多发布截至9月30日的2023年第三季度业绩报告。根据财报,拼多多第三季度收入达到了688.4亿元人民币,同比增长了93.9%。实现美国通用会计准则口径净利润…

全国高校走进深算院:共话国产数据库产教融合生态建设

近日,由教育部高等学校计算机类专业教学指导委员会、全国高等学校计算机教育研究会主办,清华大学出版社、深圳市信息技术应用创新联盟承办的“2023全国高校走进信创企业研学活动”顺利举办。来自全国各地30余家高校的近80位院校领导、教师代表走进了深圳…

【leetcode】64. 最小路径和

题目 给定一个包含非负整数的 m x n 网格 grid ,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。 说明:每次只能向下或者向右移动一步。 示例 1: 输入:grid [[1,3,1],[1,5,1],[4,2,1]] 输出&…

通过测试驱动开发(TDD)的方式开发Web项目

最近在看一本书《Test-Driven Development with Python》,里面非常详细的介绍了如何一步一步通过测试驱动开发(TDD)的方式开发Web项目。刚好这本书中使用了我之前所了解的一些技术,Django、selenium、unittest等。所以,读下来受益匪浅。 我相…

C#图像处理OpenCV开发指南(CVStar,03)——基于.NET 6的图像处理桌面程序开发实践第一步

1 Visual Studio 2022 开发基于.NET 6的OpenCV桌面程序 1.1 为什么选择.NET 6开发桌面应用? 选择 .NET 6(最早称为 .NET Core)而非 Frameworks.NET 的理由是:(1)跨平台;已经支持Windows,Linux…

Jenkins部署python接口自动化测试

一、点击新建Item 二、指定源码和分支 私钥位置:C:\Users\Administrator\.ssh 文件下 三、构建脚本编写 四、构建后操作 指定输出的allure 结果目录 总结: 感谢每一个认真阅读我文章的人!!! 作为一位过来人也是希望…

Python开发——工具篇 Pycharm的相关配置,Python相关操作 持续更新

前言 本篇博客是python开发的工具篇相关,介绍pycharm的使用和相关配置,收录python的相关操作,比如如何启动jupyter。 目录 前言引出Pycharmpycharm如何不同等级日志显示不同颜色设置不同pycharm的python环境 Python操作如何启动Jupyter 总结…

【linux】信号——信号产生

信号产生 1.预备知识2.信号产生2.1通过键盘发送信号2.2系统调用接口向进程发送信号2.3硬件异常产生信号2.4软件条件2.5总结 自我名言:只有努力,才能追逐梦想,只有努力,才不会欺骗自己。 喜欢的点赞,收藏,关…

unity程序中的根目录

在unity程序中如果要解析或保存文件时,其根目录为工程名的下一级目录,也就是Assets同级的目标

WPF中DataGrid解析

效果如图&#xff1a; 代码如下&#xff1a; <DataGrid Grid.Row"1" x:Name"dataGrid" ItemsSource"{Binding DataList}" AutoGenerateColumns"False"SelectedItem"{Binding SelectedItem,UpdateSourceTriggerPropertyChange…

【开题报告】海洋多源数据质量控制应用服务的WebServer设计与实现

开 题 报 告 内 容 论文选题的意义、主要研究内容和文献资料调研情况 一、选题意义 在当今世界研究自然环境的大背景下&#xff0c;计算机技术与各学科、各领域的综合应用逐渐增多。作为地球上最广阔的水体&#xff0c;同时也是地球上决定气候发展的主要的因素之一&#xff0…

android13(T) 客制化预置语言列表

效果图 需求分析 这个列表界面一般都是后来手动添加后才现实的&#xff0c;通过分析源码发现通过如下值可控 adb shell settings get system system_locales zh-CN,ja-JP,en-AT 所以只需查询出这个值&#xff0c;然后加在 SettingProvider 中即可 隐藏 bug 如果客户要求默…

马骑顿部署实在RPA,所产价值超该项目投入6倍

“数字化最大的挑战在于我们增长太快了&#xff0c;对于全域经营的DTC品牌来说&#xff0c;让一个部门去管理所有平台数据&#xff0c;形成品牌全域生意的协同实非易事。”马骑顿运营部负责人表示。2022年&#xff0c;马骑顿搭建企业数据中台&#xff0c;统一管理线上数据&…