Unity中Shader的BRDF解析(四)

文章目录

  • 前言
  • 一、BRDF 中的 IBL
  • 二、解析一下其中的参数
    • 1、光照衰减系数 :surfaceReduction
    • 2、GI镜面反射在不同角度下的强弱 :gi.specular * FresnelLerp (specColor, grazingTerm, nv);
    • 在BRDF中,IBL(Image Based Light)对最终效果有着重要的作用,可以模拟出反射 Cubemap 的效果,可以实现在不同环境中,不需要调节参数只需要修改 Cubemap 就达到模拟物理反射的效果。
    • BRDF2 和 BRDF3 只是对 BRDF1 性能上的妥协
  • 三、最终效果
    • 最终代码\


前言

在上一篇文章中,我们解析了BRDF中的 镜面反射,这篇文章我们继续解析BRDF中的 IBL(Image Based Lighting 基于图像的光照)

  • Unity中Shader的BRDF解析(三)

一、BRDF 中的 IBL

在这里插入图片描述

//IBL(Image Based Lighting)基于图像的光照
//surfaceReduction : 衰减
//gi.specular : 间接光中的镜面反射
//FresnelLerp : 镜面反射在不同角度下的过度
half3 ibl = surfaceReduction * gi.specular * FresnelLerp (specColor, grazingTerm, nv);


二、解析一下其中的参数

1、光照衰减系数 :surfaceReduction

// surfaceReduction = Int D(NdotH) * NdotH * Id(NdotL>0) dH = 1/(roughness^2+1)
half surfaceReduction;
# ifdef UNITY_COLORSPACE_GAMMA
surfaceReduction = 1.0-0.28roughnessperceptualRoughness; // 1-0.28x^3 as approximation for (1/(x4+1))(1/2.2) on the domain [0;1]
# else
surfaceReduction = 1.0 / (roughness
roughness + 1.0); // fade \in [0.5;1]
# endif

在这里插入图片描述

  • 当处于线性空间时,可以把光照衰减范围控制在 [0.5,1] 之间

在这里插入图片描述

  • 当处于Gamma空间时

为了节省性能,采用 r 在 [0,1]之间 近似的公式来简化计算:
1-0.28x3 as approximation for (1/(x4+1))(1/2.2) on the domain [0;1]

Unity使用 1-0.28x3 替代 (1/(x4+1))(1/2.2)

在这里插入图片描述

2、GI镜面反射在不同角度下的强弱 :gi.specular * FresnelLerp (specColor, grazingTerm, nv);

  • gi.specular 就是之前文章中解析计算的 GI 的镜面反射

  • Unity中Shader的Standard材质解析(二)

  • 镜面反射在不同角度下的过度 : FresnelLerp (specColor, grazingTerm, nv);

//GI中镜面反射的菲涅尔效果
//F0 : 视线 与 物体法线 夹角为 0° 的情况
//F90 : 视线 与 物体法线 夹角为 90° 的情况
inline half3 FresnelLerp1 (half3 F0, half3 F90, half cosA)
{
half t = Pow5 (1 - cosA); // ala Schlick interpoliation
return lerp (F0, F90, t);
}

  • F0 : 视线 与 物体法线 夹角为 0° 的情况
  • F90 : 视线 与 物体法线 夹角为 90° 的情况
  • NdotV : 视线方向单位向量 dot 法线单位向量 作为反射过度的重要参数

在BRDF中,IBL(Image Based Light)对最终效果有着重要的作用,可以模拟出反射 Cubemap 的效果,可以实现在不同环境中,不需要调节参数只需要修改 Cubemap 就达到模拟物理反射的效果。

BRDF2 和 BRDF3 只是对 BRDF1 性能上的妥协


三、最终效果

在这里插入图片描述

最终代码\

  • .cginc文件
#ifndef MYPHYSICALLYBASERENDERING_INCLUDE#define MYPHYSICALLYBASERENDERING_INCLUDE//Standard的漫反射和镜面反射计算↓//F函数的计算:(菲涅尔效果)inline half3 FresnelTerm1 (half3 F0, half cosA){half t = Pow5 (1 - cosA);   // ala Schlick interpoliationreturn F0 + (1-F0) * t;}//GI中镜面反射的菲涅尔效果//F0 : 视线 与 物体法线 夹角为 0° 的情况//F90 : 视线 与 物体法线 夹角为 90° 的情况inline half3 FresnelLerp1 (half3 F0, half3 F90, half cosA){half t = Pow5 (1 - cosA);   // ala Schlick interpoliationreturn lerp (F0, F90, t);}//V函数的计算:// Ref: http://jcgt.org/published/0003/02/03/paper.pdfinline float SmithJointGGXVisibilityTerm1 (float NdotL, float NdotV, float roughness){#if 0// Original formulation://  lambda_v    = (-1 + sqrt(a2 * (1 - NdotL2) / NdotL2 + 1)) * 0.5f;//  lambda_l    = (-1 + sqrt(a2 * (1 - NdotV2) / NdotV2 + 1)) * 0.5f;//  G           = 1 / (1 + lambda_v + lambda_l);// Reorder code to be more optimalhalf a          = roughness;half a2         = a * a;half lambdaV    = NdotL * sqrt((-NdotV * a2 + NdotV) * NdotV + a2);half lambdaL    = NdotV * sqrt((-NdotL * a2 + NdotL) * NdotL + a2);// Simplify visibility term: (2.0f * NdotL * NdotV) /  ((4.0f * NdotL * NdotV) * (lambda_v + lambda_l + 1e-5f));return 0.5f / (lambdaV + lambdaL + 1e-5f);  // This function is not intended to be running on Mobile,// therefore epsilon is smaller than can be represented by half#else//上面公式的一个近似实现(简化平方根,数学上不太精确,但是效果比较接近,性能好)// Approximation of the above formulation (simplify the sqrt, not mathematically correct but close enough)float a = roughness;float lambdaV = NdotL * (NdotV * (1 - a) + a);float lambdaL = NdotV * (NdotL * (1 - a) + a);#if defined(SHADER_API_SWITCH)return 0.5f / (lambdaV + lambdaL + UNITY_HALF_MIN);#elsereturn 0.5f / (lambdaV + lambdaL + 1e-5f);#endif#endif}//D函数的计算:inline float GGXTerm1 (float NdotH, float roughness){float a2 = roughness * roughness;float d = (NdotH * a2 - NdotH) * NdotH + 1.0f; // 2 madreturn UNITY_INV_PI * a2 / (d * d + 1e-7f); // This function is not intended to be running on Mobile,// therefore epsilon is smaller than what can be represented by half}//为了保证分母不为0,而使用的一种安全的归一化inline float3 Unity_SafeNormalize1(float3 inVec){//normalize(v) = rsqrt(dot(v,v)) * v;float dp3 = max(0.001f, dot(inVec, inVec));return inVec * rsqrt(dp3);}//迪士尼的漫反射计算half DisneyDiffuse1(half NdotV, half NdotL, half LdotH, half perceptualRoughness){half fd90 = 0.5 + 2 * LdotH * LdotH * perceptualRoughness;// Two schlick fresnel termhalf lightScatter   = (1 + (fd90 - 1) * Pow5(1 - NdotL));half viewScatter    = (1 + (fd90 - 1) * Pow5(1 - NdotV));return lightScatter * viewScatter;}// Main Physically Based BRDF// Derived from Disney work and based on Torrance-Sparrow micro-facet model////   BRDF = kD / pi + kS * (D * V * F) / 4//   I = BRDF * NdotL//// * NDF (depending on UNITY_BRDF_GGX)://  a) Normalized BlinnPhong//  b) GGX// * Smith for Visiblity term// * Schlick approximation for Fresnelhalf4 BRDF1_Unity_PBS1 (half3 diffColor, half3 specColor, half oneMinusReflectivity, half smoothness,float3 normal, float3 viewDir,UnityLight light, UnityIndirect gi){//感性的粗糙的 = 1 - smoothnessfloat perceptualRoughness = SmoothnessToPerceptualRoughness (smoothness);//半角向量(一般用 H 表示): H = 光线向量 + 视线向量(此处的 光线向量 和 视线向量 为单位向量,根据向量相加的四边形法则得出半角向量)float3 halfDir = Unity_SafeNormalize1 (float3(light.dir) + viewDir);//法线 与 视线的点积在可见像素上不应该出现负值,但是他有可能发生在 投影 与 法线 映射 时//所以,可以通过某些方式来修正,但是会产生额外的指令运算//替代方案采用abs的形式,同样可以工作只是正确性少一些    // NdotV should not be negative for visible pixels, but it can happen due to perspective projection and normal mapping// In this case normal should be modified to become valid (i.e facing camera) and not cause weird artifacts.// but this operation adds few ALU and users may not want it. Alternative is to simply take the abs of NdotV (less correct but works too).// Following define allow to control this. Set it to 0 if ALU is critical on your platform.// This correction is interesting for GGX with SmithJoint visibility function because artifacts are more visible in this case due to highlight edge of rough surface// Edit: Disable this code by default for now as it is not compatible with two sided lighting used in SpeedTree.#define UNITY_HANDLE_CORRECTLY_NEGATIVE_NDOTV 0#if UNITY_HANDLE_CORRECTLY_NEGATIVE_NDOTV// The amount we shift the normal toward the view vector is defined by the dot product.half shiftAmount = dot(normal, viewDir);normal = shiftAmount < 0.0f ? normal + viewDir * (-shiftAmount + 1e-5f) : normal;// A re-normalization should be applied here but as the shift is small we don't do it to save ALU.//normal = normalize(normal);float nv = saturate(dot(normal, viewDir)); // TODO: this saturate should no be necessary here#elsehalf nv = abs(dot(normal, viewDir));    // This abs allow to limit artifact#endif//其他向量之间的点积float nl = saturate(dot(normal, light.dir));//法线 点积 光线float nh = saturate(dot(normal, halfDir));//法线 点积 半角half lv = saturate(dot(light.dir, viewDir));//光线 点积 视线half lh = saturate(dot(light.dir, halfDir));//光线 点积 半角// Diffuse term//迪士尼原则的漫反射half diffuseTerm = DisneyDiffuse1(nv, nl, lh, perceptualRoughness) * nl;// Specular term// HACK: theoretically we should divide diffuseTerm by Pi and not multiply specularTerm!// 理论上漫反射项中应该除以 PI,但是由于以下两个原因没有这样做// BUT 1) that will make shader look significantly darker than Legacy ones//原因一:这样会导致最终效果偏暗// and 2) on engine side "Non-important" lights have to be divided by Pi too in cases when they are injected into ambient SH//原因二:当引擎光照为 不重要光照 时,进行球谐光照计算,会再除以一个 PI。所以,在Unity计算迪士尼漫反射时,不除以PI//声明一个学术上的粗糙度 = perceptualRoughness * perceptualRoughnessfloat roughness = PerceptualRoughnessToRoughness(perceptualRoughness);//GGX模型拥有比较好的效果,默认使用这个模型(并且,UNITY_BRDF_GGX在定义时,默认为 1)#if UNITY_BRDF_GGX// GGX with roughtness to 0 would mean no specular at all, using max(roughness, 0.002) here to match HDrenderloop roughtness remapping.//使用max来限定 roughtness 最小等于0 的原因:当 roughtness 为0时,结果会直接为0,导致效果丢失roughness = max(roughness, 0.002);float V = SmithJointGGXVisibilityTerm1 (nl, nv, roughness);float D = GGXTerm1 (nh, roughness);#else// Legacyhalf V = SmithBeckmannVisibilityTerm1 (nl, nv, roughness);half D = NDFBlinnPhongNormalizedTerm1 (nh, PerceptualRoughnessToSpecPower(perceptualRoughness));#endif//镜面反射中的DV项的计算//最后乘以PI的原因是因为上面计算漫反射时,等式右边没有除以PI。//导致算出的结果,等效于分母中多乘了一个PI,所以需要在计算公式时,乘以一个PI,消除PIfloat specularTerm = V*D * UNITY_PI; // Torrance-Sparrow model, Fresnel is applied later//如果颜色空间为Gamma空间:    #   ifdef UNITY_COLORSPACE_GAMMAspecularTerm = sqrt(max(1e-4h, specularTerm));#   endif// specularTerm * nl can be NaN on Metal in some cases, use max() to make sure it's a sane valuespecularTerm = max(0, specularTerm * nl);//材质上的镜面高光开关    #if defined(_SPECULARHIGHLIGHTS_OFF)specularTerm = 0.0;#endif// surfaceReduction = Int D(NdotH) * NdotH * Id(NdotL>0) dH = 1/(roughness^2+1)half surfaceReduction;#   ifdef UNITY_COLORSPACE_GAMMA//Gamma空间surfaceReduction = 1.0-0.28*roughness*perceptualRoughness;      // 1-0.28*x^3 as approximation for (1/(x^4+1))^(1/2.2) on the domain [0;1]#   else//线性空间surfaceReduction = 1.0 / (roughness*roughness + 1.0);           // fade \in [0.5;1]#   endif// To provide true Lambert lighting, we need to be able to kill specular completely.// 当我们的 metallic = 1时,并且Albedo为纯黑色的情况,不希望有金属反射效果specularTerm *= any(specColor) ? 1.0 : 0.0;half grazingTerm = saturate(smoothness + (1-oneMinusReflectivity));//漫反射颜色 = 贴图 * (gi漫反射 + 灯光颜色 * 迪士尼漫反射)half3 diffuse = diffColor * (gi.diffuse + light.color * diffuseTerm);//镜面反射 DFG / 4cos(θl)cos(θv)//speclarTerm : D G 函数//light.color : 光照颜色//FresnelTerm (specColor, lh) : F 函数half3 specular = specularTerm * light.color * FresnelTerm1 (specColor, lh);//IBL(Image Based Lighting)基于图像的光照//surfaceReduction : 衰减//gi.specular : 间接光中的镜面反射//FresnelLerp : 镜面反射在不同角度下的过度half3 ibl = surfaceReduction * gi.specular * FresnelLerp1 (specColor, grazingTerm, nv);half3 color = diffuse + specular + ibl;return half4(color, 1);}// Based on Minimalist CookTorrance BRDF// Implementation is slightly different from original derivation: http://www.thetenthplanet.de/archives/255//// * NDF (depending on UNITY_BRDF_GGX)://  a) BlinnPhong//  b) [Modified] GGX// * Modified Kelemen and Szirmay-​Kalos for Visibility term// * Fresnel approximated with 1/LdotHhalf4 BRDF2_Unity_PBS1 (half3 diffColor, half3 specColor, half oneMinusReflectivity, half smoothness,float3 normal, float3 viewDir,UnityLight light, UnityIndirect gi){float3 halfDir = Unity_SafeNormalize (float3(light.dir) + viewDir);half nl = saturate(dot(normal, light.dir));float nh = saturate(dot(normal, halfDir));half nv = saturate(dot(normal, viewDir));float lh = saturate(dot(light.dir, halfDir));// Specular termhalf perceptualRoughness = SmoothnessToPerceptualRoughness (smoothness);half roughness = PerceptualRoughnessToRoughness(perceptualRoughness);#if UNITY_BRDF_GGX// GGX Distribution multiplied by combined approximation of Visibility and Fresnel// See "Optimizing PBR for Mobile" from Siggraph 2015 moving mobile graphics course// https://community.arm.com/events/1155float a = roughness;float a2 = a*a;float d = nh * nh * (a2 - 1.f) + 1.00001f;#ifdef UNITY_COLORSPACE_GAMMA// Tighter approximation for Gamma only rendering mode!// DVF = sqrt(DVF);// DVF = (a * sqrt(.25)) / (max(sqrt(0.1), lh)*sqrt(roughness + .5) * d);float specularTerm = a / (max(0.32f, lh) * (1.5f + roughness) * d);#elsefloat specularTerm = a2 / (max(0.1f, lh*lh) * (roughness + 0.5f) * (d * d) * 4);#endif// on mobiles (where half actually means something) denominator have risk of overflow// clamp below was added specifically to "fix" that, but dx compiler (we convert bytecode to metal/gles)// sees that specularTerm have only non-negative terms, so it skips max(0,..) in clamp (leaving only min(100,...))#if defined (SHADER_API_MOBILE)specularTerm = specularTerm - 1e-4f;#endif#else// Legacyhalf specularPower = PerceptualRoughnessToSpecPower(perceptualRoughness);// Modified with approximate Visibility function that takes roughness into account// Original ((n+1)*N.H^n) / (8*Pi * L.H^3) didn't take into account roughness// and produced extremely bright specular at grazing angleshalf invV = lh * lh * smoothness + perceptualRoughness * perceptualRoughness; // approx ModifiedKelemenVisibilityTerm(lh, perceptualRoughness);half invF = lh;half specularTerm = ((specularPower + 1) * pow (nh, specularPower)) / (8 * invV * invF + 1e-4h);#ifdef UNITY_COLORSPACE_GAMMAspecularTerm = sqrt(max(1e-4f, specularTerm));#endif#endif#if defined (SHADER_API_MOBILE)specularTerm = clamp(specularTerm, 0.0, 100.0); // Prevent FP16 overflow on mobiles#endif#if defined(_SPECULARHIGHLIGHTS_OFF)specularTerm = 0.0;#endif// surfaceReduction = Int D(NdotH) * NdotH * Id(NdotL>0) dH = 1/(realRoughness^2+1)// 1-0.28*x^3 as approximation for (1/(x^4+1))^(1/2.2) on the domain [0;1]// 1-x^3*(0.6-0.08*x)   approximation for 1/(x^4+1)#ifdef UNITY_COLORSPACE_GAMMAhalf surfaceReduction = 0.28;#elsehalf surfaceReduction = (0.6-0.08*perceptualRoughness);#endifsurfaceReduction = 1.0 - roughness*perceptualRoughness*surfaceReduction;half grazingTerm = saturate(smoothness + (1-oneMinusReflectivity));half3 color =   (diffColor + specularTerm * specColor) * light.color * nl+ gi.diffuse * diffColor+ surfaceReduction * gi.specular * FresnelLerpFast (specColor, grazingTerm, nv);return half4(color, 1);}sampler2D_float unity_NHxRoughness1;half3 BRDF3_Direct1(half3 diffColor, half3 specColor, half rlPow4, half smoothness){half LUT_RANGE = 16.0; // must match range in NHxRoughness() function in GeneratedTextures.cpp// Lookup texture to save instructionshalf specular = tex2D(unity_NHxRoughness1, half2(rlPow4, SmoothnessToPerceptualRoughness(smoothness))).r * LUT_RANGE;#if defined(_SPECULARHIGHLIGHTS_OFF)specular = 0.0;#endifreturn diffColor + specular * specColor;}half3 BRDF3_Indirect1(half3 diffColor, half3 specColor, UnityIndirect indirect, half grazingTerm, half fresnelTerm){half3 c = indirect.diffuse * diffColor;c += indirect.specular * lerp (specColor, grazingTerm, fresnelTerm);return c;}// Old school, not microfacet based Modified Normalized Blinn-Phong BRDF// Implementation uses Lookup texture for performance//// * Normalized BlinnPhong in RDF form// * Implicit Visibility term// * No Fresnel term//// TODO: specular is too weak in Linear rendering modehalf4 BRDF3_Unity_PBS1 (half3 diffColor, half3 specColor, half oneMinusReflectivity, half smoothness,float3 normal, float3 viewDir,UnityLight light, UnityIndirect gi){float3 reflDir = reflect (viewDir, normal);half nl = saturate(dot(normal, light.dir));half nv = saturate(dot(normal, viewDir));// Vectorize Pow4 to save instructionshalf2 rlPow4AndFresnelTerm = Pow4 (float2(dot(reflDir, light.dir), 1-nv));  // use R.L instead of N.H to save couple of instructionshalf rlPow4 = rlPow4AndFresnelTerm.x; // power exponent must match kHorizontalWarpExp in NHxRoughness() function in GeneratedTextures.cpphalf fresnelTerm = rlPow4AndFresnelTerm.y;half grazingTerm = saturate(smoothness + (1-oneMinusReflectivity));half3 color = BRDF3_Direct1(diffColor, specColor, rlPow4, smoothness);color *= light.color * nl;color += BRDF3_Indirect1(diffColor, specColor, gi, grazingTerm, fresnelTerm);return half4(color, 1);}// Default BRDF to use://在 ProjectSetting->Graphics->TierSetting中设置//StandardShaderQuality = low(UNITY_PBS_USE_BRDF3)//StandardShaderQuality = Medium(UNITY_PBS_USE_BRDF2)//StandardShaderQuality = High(UNITY_PBS_USE_BRDF1)#if !defined (UNITY_BRDF_PBS1) // allow to explicitly override BRDF in custom shader// still add safe net for low shader models, otherwise we might end up with shaders failing to compile#if SHADER_TARGET < 30 || defined(SHADER_TARGET_SURFACE_ANALYSIS) // only need "something" for surface shader analysis pass; pick the cheap one#define UNITY_BRDF_PBS1 BRDF3_Unity_PBS1  //效果最差的BRDF#elif defined(UNITY_PBS_USE_BRDF3)#define UNITY_BRDF_PBS1 BRDF3_Unity_PBS1#elif defined(UNITY_PBS_USE_BRDF2)#define UNITY_BRDF_PBS1 BRDF2_Unity_PBS1#elif defined(UNITY_PBS_USE_BRDF1)#define UNITY_BRDF_PBS1 BRDF1_Unity_PBS1#else#error something broke in auto-choosing BRDF#endif#endifinline half OneMinusReflectivityFromMetallic1(half metallic){// We'll need oneMinusReflectivity, so//   1-reflectivity = 1-lerp(dielectricSpec, 1, metallic) = lerp(1-dielectricSpec, 0, metallic)// store (1-dielectricSpec) in unity_ColorSpaceDielectricSpec.a, then//   1-reflectivity = lerp(alpha, 0, metallic) = alpha + metallic*(0 - alpha) =//                  = alpha - metallic * alphahalf oneMinusDielectricSpec = unity_ColorSpaceDielectricSpec.a;return oneMinusDielectricSpec - metallic * oneMinusDielectricSpec;}inline half3 DiffuseAndSpecularFromMetallic1 (half3 albedo, half metallic, out half3 specColor, out half oneMinusReflectivity){//计算镜面高光颜色//当metallic为0(即非金属时),返回unity_ColorSpaceDielectricSpec.rgb(0.04)//unity_ColorSpaceDielectricSpec.rgb表示的是绝缘体的通用反射颜色//迪士尼经大量测量用 0.04 来表示//当 metallic = 1 时(金属),返回Albedo,也就是物体本身的颜色specColor = lerp (unity_ColorSpaceDielectricSpec.rgb, albedo, metallic);oneMinusReflectivity = OneMinusReflectivityFromMetallic1(metallic);return albedo * oneMinusReflectivity;}//s : 物体表面数据信息//viewDir : 视线方向//gi : 全局光照(GI漫反射 和 GI镜面反射)inline half4 LightingStandard1 (SurfaceOutputStandard s, float3 viewDir, UnityGI gi){s.Normal = normalize(s.Normal);half oneMinusReflectivity;//镜面高光颜色half3 specColor;s.Albedo = DiffuseAndSpecularFromMetallic1 (s.Albedo, s.Metallic, /*out*/ specColor, /*out*/ oneMinusReflectivity);// shader relies on pre-multiply alpha-blend (_SrcBlend = One, _DstBlend = OneMinusSrcAlpha)// this is necessary to handle transparency in physically correct way - only diffuse component gets affected by alpha//当开启半透明模式时,对 Alpha 进行相关计算half outputAlpha;s.Albedo = PreMultiplyAlpha (s.Albedo, s.Alpha, oneMinusReflectivity, /*out*/ outputAlpha);//具体的BRDF计算//s.Albedo : 物体表面的基础颜色//specColor : 镜面反射颜色//oneMinusReflectivity : 漫反射率 = 1 - 镜面反射率//s.Smoothness : 物体表面的光滑度//s.Normal : 物体表面的法线//viewDir : 视线方向//gi.light : 直接光信息//gi.indirect : GI间接光信息half4 c = UNITY_BRDF_PBS1 (s.Albedo, specColor, oneMinusReflectivity, s.Smoothness, s.Normal, viewDir, gi.light, gi.indirect);c.a = outputAlpha;return c;}//Standard的GI计算↓half3 Unity_GlossyEnvironment1 (UNITY_ARGS_TEXCUBE(tex), half4 hdr, Unity_GlossyEnvironmentData glossIn){half perceptualRoughness = glossIn.roughness /* perceptualRoughness */ ;// TODO: CAUTION: remap from Morten may work only with offline convolution, see impact with runtime convolution!// For now disabled#if 0float m = PerceptualRoughnessToRoughness(perceptualRoughness); // m is the real roughness parameterconst float fEps = 1.192092896e-07F;        // smallest such that 1.0+FLT_EPSILON != 1.0  (+1e-4h is NOT good here. is visibly very wrong)float n =  (2.0/max(fEps, m*m))-2.0;        // remap to spec power. See eq. 21 in --> https://dl.dropboxusercontent.com/u/55891920/papers/mm_brdf.pdfn /= 4;                                     // remap from n_dot_h formulatino to n_dot_r. See section "Pre-convolved Cube Maps vs Path Tracers" --> https://s3.amazonaws.com/docs.knaldtech.com/knald/1.0.0/lys_power_drops.htmlperceptualRoughness = pow( 2/(n+2), 0.25);      // remap back to square root of real roughness (0.25 include both the sqrt root of the conversion and sqrt for going from roughness to perceptualRoughness)#else// MM: came up with a surprisingly close approximation to what the #if 0'ed out code above does.//r = r * (1.7 - 0.7*r)//由于粗糙度与反射探针的mip变化不呈现线性正比,所以需要一个公式来改变perceptualRoughness = perceptualRoughness*(1.7 - 0.7*perceptualRoughness);#endif//UNITY_SPECCUBE_LOD_STEPS = 6,表示反射探针的mip级别有 6 档。粗糙度X6得到最终得mip级别half mip = perceptualRoughnessToMipmapLevel(perceptualRoughness);half3 R = glossIn.reflUVW;half4 rgbm = UNITY_SAMPLE_TEXCUBE_LOD(tex, R, mip);return DecodeHDR(rgbm, hdr);}//GI中的镜面反射inline half3 UnityGI_IndirectSpecular1(UnityGIInput data, half occlusion, Unity_GlossyEnvironmentData glossIn){half3 specular;//如果开启了反射探针的Box Projection#ifdef UNITY_SPECCUBE_BOX_PROJECTION// we will tweak reflUVW in glossIn directly (as we pass it to Unity_GlossyEnvironment twice for probe0 and probe1), so keep original to pass into BoxProjectedCubemapDirectionhalf3 originalReflUVW = glossIn.reflUVW;glossIn.reflUVW = BoxProjectedCubemapDirection (originalReflUVW, data.worldPos, data.probePosition[0], data.boxMin[0], data.boxMax[0]);#endif#ifdef _GLOSSYREFLECTIONS_OFFspecular = unity_IndirectSpecColor.rgb;#elsehalf3 env0 = Unity_GlossyEnvironment1 (UNITY_PASS_TEXCUBE(unity_SpecCube0), data.probeHDR[0], glossIn);//如果开启了反射探针混合#ifdef UNITY_SPECCUBE_BLENDINGconst float kBlendFactor = 0.99999;float blendLerp = data.boxMin[0].w;UNITY_BRANCHif (blendLerp < kBlendFactor){#ifdef UNITY_SPECCUBE_BOX_PROJECTIONglossIn.reflUVW = BoxProjectedCubemapDirection (originalReflUVW, data.worldPos, data.probePosition[1], data.boxMin[1], data.boxMax[1]);#endifhalf3 env1 = Unity_GlossyEnvironment (UNITY_PASS_TEXCUBE_SAMPLER(unity_SpecCube1,unity_SpecCube0), data.probeHDR[1], glossIn);specular = lerp(env1, env0, blendLerp);}else{specular = env0;}#elsespecular = env0;#endif#endifreturn specular * occlusion;}inline UnityGI UnityGlobalIllumination1 (UnityGIInput data, half occlusion, half3 normalWorld){return UnityGI_Base(data, occlusion, normalWorld);}//GI计算inline UnityGI UnityGlobalIllumination1 (UnityGIInput data, half occlusion, half3 normalWorld, Unity_GlossyEnvironmentData glossIn){//计算得出GI中的漫反射UnityGI o_gi = UnityGI_Base(data, occlusion, normalWorld);//计算得出GI中的镜面反射o_gi.indirect.specular = UnityGI_IndirectSpecular1(data, occlusion, glossIn);return o_gi;}float SmoothnessToPerceptualRoughness1(float smoothness){return (1 - smoothness);}Unity_GlossyEnvironmentData UnityGlossyEnvironmentSetup1(half Smoothness, half3 worldViewDir, half3 Normal, half3 fresnel0){Unity_GlossyEnvironmentData g;//粗糙度g.roughness /* perceptualRoughness */   = SmoothnessToPerceptualRoughness1(Smoothness);//反射球的采样坐标g.reflUVW   = reflect(-worldViewDir, Normal);return g;}//PBR光照模型的GI计算inline void LightingStandard_GI1(SurfaceOutputStandard s,UnityGIInput data,inout UnityGI gi){//如果是延迟渲染PASS并且开启了延迟渲染反射探针的话#if defined(UNITY_PASS_DEFERRED) && UNITY_ENABLE_REFLECTION_BUFFERSgi = UnityGlobalIllumination1(data, s.Occlusion, s.Normal);#else//Unity_GlossyEnvironmentData表示GI中的反射准备数据Unity_GlossyEnvironmentData g = UnityGlossyEnvironmentSetup1(s.Smoothness, data.worldViewDir, s.Normal,lerp(unity_ColorSpaceDielectricSpec.rgb, s.Albedo,s.Metallic));//进行GI计算并返回输出gigi = UnityGlobalIllumination1(data, s.Occlusion, s.Normal, g);#endif}#endif
  • Shader文件
//Standard材质
Shader "MyShader/P2_2_9"
{Properties{_Color ("Color", Color) = (1,1,1,1)_MainTex ("Albedo (RGB)", 2D) = "white" {}[NoScaleOffset]_MetallicTex("Metallic(R) Smoothness(G) AO(B)",2D) = "white" {}[NoScaleOffset][Normal]_NormalTex("NormalTex",2D) = "bump" {}_Glossiness ("Smoothness", Range(0,1)) = 0.0_Metallic ("Metallic", Range(0,1)) = 0.0_AO("AO",Range(0,1)) = 1.0}SubShader{Tags{"RenderType"="Opaque"}LOD 200// ---- forward rendering base pass:Pass{Name "FORWARD"Tags{"LightMode" = "ForwardBase"}CGPROGRAM// compile directives#pragma vertex vert#pragma fragment frag#pragma target 3.0#pragma multi_compile_instancing#pragma multi_compile_fog#pragma multi_compile_fwdbase#include "UnityCG.cginc"#include "Lighting.cginc"#include "UnityPBSLighting.cginc"#include "AutoLight.cginc"#include "CGInclude/MyPhysicallyBasedRendering.cginc"sampler2D _MainTex;float4 _MainTex_ST;half _Glossiness;half _Metallic;fixed4 _Color;sampler2D _MetallicTex;half _AO;sampler2D _NormalTex;struct appdata{float4 vertex : POSITION;float4 tangent : TANGENT;float3 normal : NORMAL;float4 texcoord : TEXCOORD0;float4 texcoord1 : TEXCOORD1;float4 texcoord2 : TEXCOORD2;float4 texcoord3 : TEXCOORD3;fixed4 color : COLOR;UNITY_VERTEX_INPUT_INSTANCE_ID};// vertex-to-fragment interpolation data// no lightmaps:struct v2f{float4 pos : SV_POSITION;float2 uv : TEXCOORD0; // _MainTexfloat3 worldNormal : TEXCOORD1;float3 worldPos : TEXCOORD2;#if UNITY_SHOULD_SAMPLE_SHhalf3 sh : TEXCOORD3; // SH#endif//切线空间需要使用的矩阵float3 tSpace0 : TEXCOORD4;float3 tSpace1 : TEXCOORD5;float3 tSpace2 : TEXCOORD6;UNITY_FOG_COORDS(7)UNITY_SHADOW_COORDS(8)};// vertex shaderv2f vert(appdata v){v2f o;o.pos = UnityObjectToClipPos(v.vertex);o.uv.xy = TRANSFORM_TEX(v.texcoord, _MainTex);float3 worldPos = mul(unity_ObjectToWorld, v.vertex).xyz;float3 worldNormal = UnityObjectToWorldNormal(v.normal);//世界空间下的切线half3 worldTangent = UnityObjectToWorldDir(v.tangent);//切线方向half tangentSign = v.tangent.w * unity_WorldTransformParams.w;//世界空间下的副切线half3 worldBinormal = cross(worldNormal, worldTangent) * tangentSign;//切线矩阵o.tSpace0 = float3(worldTangent.x, worldBinormal.x, worldNormal.x);o.tSpace1 = float3(worldTangent.y, worldBinormal.y, worldNormal.y);o.tSpace2 = float3(worldTangent.z, worldBinormal.z, worldNormal.z);o.worldPos.xyz = worldPos;o.worldNormal = worldNormal;// SH/ambient and vertex lights#if UNITY_SHOULD_SAMPLE_SH && !UNITY_SAMPLE_FULL_SH_PER_PIXELo.sh = 0;// Approximated illumination from non-important point lights#ifdef VERTEXLIGHT_ONo.sh += Shade4PointLights (unity_4LightPosX0, unity_4LightPosY0, unity_4LightPosZ0,unity_LightColor[0].rgb, unity_LightColor[1].rgb, unity_LightColor[2].rgb, unity_LightColor[3].rgb,unity_4LightAtten0, worldPos, worldNormal);#endifo.sh = ShadeSHPerVertex (worldNormal, o.sh);#endifUNITY_TRANSFER_LIGHTING(o, v.texcoord1.xy);UNITY_TRANSFER_FOG(o, o.pos); // pass fog coordinates to pixel shaderreturn o;}// fragment shaderfixed4 frag(v2f i) : SV_Target{UNITY_EXTRACT_FOG(i);float3 worldPos = i.worldPos.xyz;float3 worldViewDir = normalize(UnityWorldSpaceViewDir(worldPos));SurfaceOutputStandard o;UNITY_INITIALIZE_OUTPUT(SurfaceOutputStandard, o);fixed4 mainTex = tex2D(_MainTex, i.uv);o.Albedo = mainTex.rgb * _Color;o.Emission = 0.0;fixed4 metallicTex = tex2D(_MetallicTex, i.uv);o.Metallic = metallicTex.r * _Metallic;o.Smoothness = metallicTex.g * _Glossiness;o.Occlusion = metallicTex.b * _AO;o.Alpha = 1;half3 normalTex = UnpackNormal(tex2D(_NormalTex,i.uv));half3 worldNormal = half3(dot(i.tSpace0,normalTex),dot(i.tSpace1,normalTex),dot(i.tSpace2,normalTex));o.Normal = worldNormal;// compute lighting & shadowing factorUNITY_LIGHT_ATTENUATION(atten, i, worldPos)// Setup lighting environmentUnityGI gi;UNITY_INITIALIZE_OUTPUT(UnityGI, gi);gi.indirect.diffuse = 0;gi.indirect.specular = 0;gi.light.color = _LightColor0.rgb;gi.light.dir = _WorldSpaceLightPos0.xyz;// Call GI (lightmaps/SH/reflections) lighting functionUnityGIInput giInput;UNITY_INITIALIZE_OUTPUT(UnityGIInput, giInput);giInput.light = gi.light;giInput.worldPos = worldPos;giInput.worldViewDir = worldViewDir;giInput.atten = atten;#if defined(LIGHTMAP_ON) || defined(DYNAMICLIGHTMAP_ON)giInput.lightmapUV = IN.lmap;#elsegiInput.lightmapUV = 0.0;#endif#if UNITY_SHOULD_SAMPLE_SH && !UNITY_SAMPLE_FULL_SH_PER_PIXELgiInput.ambient = i.sh;#elsegiInput.ambient.rgb = 0.0;#endifgiInput.probeHDR[0] = unity_SpecCube0_HDR;giInput.probeHDR[1] = unity_SpecCube1_HDR;#if defined(UNITY_SPECCUBE_BLENDING) || defined(UNITY_SPECCUBE_BOX_PROJECTION)giInput.boxMin[0] = unity_SpecCube0_BoxMin; // .w holds lerp value for blending#endif#ifdef UNITY_SPECCUBE_BOX_PROJECTIONgiInput.boxMax[0] = unity_SpecCube0_BoxMax;giInput.probePosition[0] = unity_SpecCube0_ProbePosition;giInput.boxMax[1] = unity_SpecCube1_BoxMax;giInput.boxMin[1] = unity_SpecCube1_BoxMin;giInput.probePosition[1] = unity_SpecCube1_ProbePosition;#endifLightingStandard_GI1(o, giInput, gi);//return fixed4(gi.indirect.specular,1);// PBS的核心计算fixed4 c = LightingStandard1(o, worldViewDir, gi);UNITY_APPLY_FOG(_unity_fogCoord, c); // apply fogUNITY_OPAQUE_ALPHA(c.a); //把c的Alpha置1return c;}ENDCG}}}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/180892.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【人工智能】人工智能的技术研究与安全问题的深入讨论

前言 人工智能&#xff08;Artificial Intelligence&#xff09;&#xff0c;英文缩写为AI。 它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是新一轮科技革命和产业变革的重要驱动力量。 &#x1f4d5;作者简介&#x…

波兰边缘计算初创公司获得450w欧元融资

边缘计算社区获悉&#xff0c;近期&#xff0c;波兰边缘计算初创公司CTHINGS.CO 获得450w欧元A轮融资。 以下是官方声明&#xff1a; CTHINGS.CO 获得 2000 万兹罗提&#xff08;约450 万欧元&#xff09;用于国际扩张。此轮融资涉及 ORLEN VC、PKO VC、Freya Capital 和现有投…

embeddings

“embeddings”的中文翻译是“嵌入”或“嵌入向量”。在自然语言处理&#xff08;NLP&#xff09;领域&#xff0c;通常被称为“词向量”或“词嵌入”&#xff0c;它是表示词汇或令牌的一种方式&#xff0c;通过将这些词汇或令牌映射到一个向量空间中的点&#xff0c;以捕捉它们…

「Verilog学习笔记」整数倍数据位宽转换8to16

专栏前言 本专栏的内容主要是记录本人学习Verilog过程中的一些知识点&#xff0c;刷题网站用的是牛客网 根据时序图&#xff0c;数据是在第二个数据到来之后输出&#xff0c;当仅有一个数据到来时&#xff0c;不产生输出&#xff0c;所以内部需要一个指示信号valid_cnt&#xf…

VMware虚机重启后静态IP不生效

配置好一套虚机之后&#xff0c;因为重启电脑&#xff0c;导致虚机的静态ip配置不生效&#xff0c;xshell连接不上虚机。以下是自查和解决方案&#xff1a; 1.使用su -进入root用户 2.查看打开虚机的teminal窗口查看配置的ip文件&#xff1a;vim /etc/sysconfig/network-script…

N8975A/安捷伦Agilent N8975A噪声系数分析仪

181/2461/8938产品概述N8975A是一款高性能噪声系数分析仪 用于进行快速、准确且可重复的噪声系统测量。 N8975A易用的特性能将复杂的测量简单化并让您获得值得信任的可重复且可靠的测量结果。 N8975A可同时提供噪声系数和增益测量&#xff0c;并可以多种格式查看、打印和保存…

学习知识随笔(Django)

文章目录 MVC与MTV模型MVCMTV Django目录结构Django请求生命周期流程图路由控制路由是什么路由匹配反向解析路由分发 视图层视图函数语法reqeust对象属性reqeust对象方法 MVC与MTV模型 MVC Web服务器开发领域里著名的MVC模式&#xff0c;所谓MVC就是把Web应用分为模型(M&#…

2023-简单点-yolox-pytorch代码解析(一)-nets/darknet.py

yolox-pytorch: nets/darknet.py yolox网络结构yolox-pytorch目录今天解析注释net/darknet.pyFocusBaseConvDWConvSPPBottleneckDarknet未完待续。。。 yolox网络结构 yolox-pytorch目录 今天解析注释net/darknet.py #!/usr/bin/env python3 # 指定使用python3来执行此脚本 …

主要分布式文件系统架构对比分析:GFS vs. Tectonic vs. JuiceFS

随着技术的进步和数据的不断爆炸&#xff0c;传统的磁盘文件系统已经暴露出它们的局限性。为了满足不断增长的存储需求&#xff0c;分布式文件系统作为动态且可扩展的解决方案应运而生。在本文中&#xff0c;我们探讨了三种代表性分布式文件系统的设计原则、创新和解决的挑战&a…

SEO工具-免费功能最全的5款SEO工具

随着互联网的蓬勃发展&#xff0c;搜索引擎优化&#xff08;SEO&#xff09;已经成为许多企业和个人网站必备的关键技能。然而&#xff0c;对于初学者或者运营小型网站的人来说&#xff0c;使用专业的SEO工具可能涉及较高的成本。在这篇文章中&#xff0c;我们将向您推荐五款高…

西南科技大学模拟电子技术实验二(二极管特性测试及其应用电路)预习报告

目录 一、计算/设计过程 二、画出并填写实验指导书上的预表 三、画出并填写实验指导书上的虚表 四、粘贴原理仿真、工程仿真截图 一、计算/设计过程 说明:本实验是验证性实验,计算预测验证结果。是设计性实验一定要从系统指标计算出元件参数过程,越详细越好。用公式输入…

基于单片机的烟雾检测报警装置(论文+源码)

1.系统设计 &#xff08;1&#xff09;利用传感器实现环境中温度、烟雾浓度的实时检测&#xff1b; &#xff08;2&#xff09;系统检测的各项数据信息通过液晶模块进行显示&#xff0c;提高设计可视化&#xff1b; &#xff08;3&#xff09;系统可以根据实际情况利用按键模…

Mysql单表查询练习

一、单表查询 素材&#xff1a; 表名&#xff1a;worker-- 表中字段均为中文&#xff0c;比如 部门号 工资 职工号 参加工作 等 CREATE TABLE worker (部门号 int(11) NOT NULL,职工号 int(11) NOT NULL,工作时间 date NOT NULL,工资 float(8,2) NOT NULL,政治面貌 varchar(10…

双十二有什么好物是值得推荐?智能家居好物推荐

都知十一月份跟十二月份都有两个大促的时间&#xff0c;那就是双十一跟双十二&#xff0c;距离双十一过去已经半个月了&#xff0c;是不是还有很多朋友在双十一的时候也没有买尽兴&#xff0c;别慌&#xff01;错过了双十一咱还有双十二&#xff0c;双十二的优惠力度也不会低于…

短视频账号矩阵系统源码/saas独立源头技术开发

一、批量剪辑&#xff08;采用php语言&#xff0c;数学建模&#xff09; 短视频合成批量剪辑的算法主要有以下几种&#xff1a; 1. 帧间插值算法&#xff1a;通过对多个视频的帧进行插帧处理&#xff0c;从而合成一段平滑的短视频。 2. 特征提取算法&#xff1a;提取多个视频中…

【开发实践】使用POI实现导出带有复杂表头的的excel文件

一、需求分析 公司业务部门需要&#xff0c;根据一些数据&#xff0c;加上表头&#xff0c;导出需要的excel表格。效果如下&#xff1a; 二、代码实现 【依赖准备】 <!-- POI --><dependency><groupId>org.apache.poi</groupId><artifactId>po…

【esp32】可变时间的定时器中断的开启和关闭

前言 回忆若能下酒&#xff0c;往事便可作一场宿醉。醒来时&#xff0c;天依旧清亮&#xff0c;风仍然分明&#xff0c;而光阴的两岸&#xff0c;终究无法以一苇杭之。我知你心意。无须更多言语&#xff0c;我必与你相忘于江湖&#xff0c;以沧桑为饮&#xff0c;年华果腹&…

倾斜摄影三维模型的根节点合并的轻量化技术方法分析

倾斜摄影三维模型的根节点合并的轻量化技术方法分析 倾斜摄影三维模型的根节点合并是一种轻量化技术&#xff0c;旨在减小模型数据的大小&#xff0c;提高渲染效率和加载速度。在本文中&#xff0c;我们将探讨关于倾斜摄影三维模型根节点合并的轻量化技术方法。 1、LOD&#x…

SpringBoot+网易邮箱登录注册

文章目录 SpringBoot网易邮箱登录注册pom.xmlapplication.ymlsqlUserEmail.javaUserEmailMapper.javaUserEmailMapper.xmlEmailService.javaUserEmailService.javaUserEmailServiceImpl.javaUserEmailController.javaregister1.html 编写前参考 SpringBoot网易邮箱登录注册 po…

PPSSPP (PSP游戏模拟器)最新版安装使用教程

PPSSPP优势 1、目前唯一的也是最好的psp模拟器 可运行绝大多数psp游戏且运行高速&#xff0c;即使是低配手机也能游玩经典大作。 2、支持自定义调节虚拟手柄和实体手柄连接 ppsspp模拟器支持使用虚拟手柄或者连接实体手柄游玩&#xff0c;同时还可以自定义调节按键选项。 …