探索性因子分析流程

探索性因子分析的步骤:

接下来,通过一个案例演示因子分析(探索性因子分析)的各个步骤应该如何进行。

案例:欲探究我国不同省份铁路运输能力情况,收集到部分相关数据如下:

上传数据至SPSSAU系统,在【进阶方法】模块,选择【探索性因子分析】,将变量拖拽到右侧分析框,勾选“因子得分”与“综合得分”,旋转方法选择默认的“最大方差法”,操作如下图:

一、指标数据标准化处理

由于指标数据性质不同,具有不同的数量级和量纲,会导致分析结果不准确或产生误差。因此,先对原始数据进行标准化处理。SPSSAU因子分析将自动进行标准化处理,因此不需要再对数据进行处理。

标准化计算公式:(X-Mean)/ Std

二、因子分析适用性检验

进行因子分析的前提是数据适合使用该方法,通常采取KMO检验和Bartlett球形检验。KMO检验用于检查变量间的相关性,取值为0~1。KMO值越接近于1,变量间的相关性越强,一般该值大于0.6即可进行因子分析。Bartlett球形检验用于检验变量是否各自独立,通常显著性小于0.05时,说明符合标准,适合做因子分析。

本案例SPSSAU输出KMO和Bartlett球形检验结果如下:

从结果来看,KMO值为0.722大于0.6,所以可以进行因子分析。同时Bartlett球形检验结果显示p值小于0.05,可以进行因子分析。

三、提取公因子

以特征根大于1为标准提取公因子,SPSSAU得到各因子的特征根以及方差解释率见下表:

分析上表可知,特征根大于1的因子共有两个,这2个公因子的累计方差解释率为78.808%,第一个因子的方差解释率为41.346%,第二个因子的方差解释率为37.462%,说明提取的两个公因子能够代表原来6个铁路运输能力指标78.808%的信息,整体来看信息变量丢失较少,因子分析效果比较理想。

另外,从特征根的碎石图可以更为直观的看出拟提取的公因子。如上图,前两个因子的让特征根值均大于1,且曲线比价陡峭,剩下4个特征根值均小于1且特征根值曲线逐渐变得比较平缓,即提取前2个因子可以代表所有原始铁路运输指标的绝大部分信息,与方差解释率得到结果一致。

四、公因子命名与解释

找到公因子后,为了理解公因子的实际意义以及方便对问题进行分析,需要继续进行因子旋转。旋转常用方法为最大方差法。旋转后的因子载荷矩阵可以直观反映各个变量对主成分的贡献程度,一个变量在某个公因子上的载荷系数的绝对值越大,说明变量与该公因子越具有相关性

下表为使用最大方差法进行旋转后得到的因子载荷系数表格:

分析上表可知,因子1在铁路货运总量、铁路营业里程、铁路货物总周转量上具有较大的载荷,因此这3个变量归为一类命名为货运因子(记作F1)。因子2在铁路客运量、铁路旅客周转量、铁路运输职工人数上具有较大的载荷,因此这3个变量归为另一类命名为客运因子(记作F2)。

五、计算因子得分

确定因子后,进一步计算各因子得分,SPSSAU输出成份得分系数矩阵如下:

根据成份得分系数矩阵,得到公因子F由变量X表示线性组合的因子得分函数:

F1=-0.203*铁路客运量-0.178*铁路旅客周转量+0.537*铁路货运总量+0.294*铁路营业里程+0.333*铁路货物总周转量+0.135*铁路运输职工人数

F2=0.506*铁路客运量+0.488*铁路旅客周转量-0.321*铁路货运总量+0.025*铁路营业里程-0.014*铁路货物总周转量+0.197*铁路运输职工人数

这一过程可通过手算完成,但要注意使用的是标准化后的数据代入公式。

在我们进行分析前,勾选【因子得分】,SPSSAU自动保存公因子得分,如下图:

六、计算综合得分

进行综合评价将指标数据代入因子表达式,计算综合得分,分析结果并进行综合评价。即以2个公因子得分为基础,再以每个因子的方差解释率为权数进行线性加权平均,最后得到一个综合得分模型:

注:分子为两个公因子旋转后方差解释率,分母为旋转后累计方差解释率。

勾选【综合得分】后,SPSSAU将自动保存综合得分,结果见下图:

得到综合得分后,可将数据下载至本地,使用excel对综合得分进行排序,该排名就代表了31个省份的铁路运输能力。最后整理成下面这个一个表格:

分析31个省份铁路运输能力综合得分表可知,河北省的铁路运输能力最强,海南省铁路运输能力最弱......

至此,因子分析结束。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/178974.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

echarts 水波图

echarts 水波图 安装 npm install echarts --save npm install echarts-liquidfill --save引入 import * as echarts from echarts; import echarts-liquidfill;html <div id"chart1" ref"chart1" class"chart1"></div>css .cha…

常见面试题-Redis 切片集群以及主节点选举机制

Redis 切片集群了解吗&#xff1f; 答&#xff1a; Redis 切片集群是目前使用比较多的方案&#xff0c;Redis 切面集群支持多个主从集群进行横向扩容&#xff0c;架构如下&#xff1a; 使用切片集群有什么好处&#xff1f; 提升 Redis 读写性能&#xff0c;之前的主从模式中&…

使用C语言库函数qsort排序注意点

目录 题目背景错误C语言代码&#xff1a;正确C语言代码&#xff1a;注意点 题目背景 高校团委组织校园歌手比赛&#xff0c;进入决赛的校园歌手有10位,歌手编号从1到10进行编号。组委会随机抽取方式产生了决赛次序为&#xff1a;3,1,9,10,2,7,5,8,4,6。比赛现场有5个评委为参赛…

【Docker项目实战】使用Docker部署Plik临时文件上传系统

【Docker实战项目】使用Docker部署Plik 临时文件上传系统 一、Plik介绍1.1 Plik简介1.2 Plik特点 二、本地环境介绍2.1 本地环境规划2.2 本次实践介绍 三、本地环境检查3.1 检查Docker服务状态3.2 检查Docker版本3.3 检查docker compose 版本 四、下载Plik镜像五、部署Plik临时…

PLC:200smart

PLC&#xff1a;200smart 第十章、数据类型、数据存储1、数据类型1.1、有符号数1.2、有符号数 2、传送指令 第十一章、比较指令、整数、浮点数的运算1、比较指令1、运算指令1.1、浮点数运算1.2、整数运算 第十章、数据类型、数据存储 1、数据类型 数据类型分为两大类 无符号数…

【小布_ORACLE】Part11-1--RMAN Backups笔记

Oracle的数据备份于恢复RMAN Backups 学习第11章需要掌握&#xff1a; 一.RMAN的备份类型 二.使用backup命令创建备份集 三.创建备份文件 四.备份归档日志文件 五.使用RMAN的copy命令创建镜像拷贝 文章目录 Oracle的数据备份于恢复RMAN Backups1.RMAN Backup Concepts&#x…

用了这7款html网页制作软件,你会爱上编程!

制作网页是一个复杂的过程&#xff0c;需要注意到各种细节&#xff0c;只有依靠出色的技术能力和强大的工具&#xff0c;我们才能真正达到我们的目标。幸运的是&#xff0c;有很多优秀的HTML网页设计软件可以让整个流程变得更加轻松和高效。以下就是我们经过深思熟虑和严格筛选…

Redis 的过期策略都有哪些?

思考:假如redis的key过期之后&#xff0c;会立即删除吗&#xff1f; Redis对数据设置数据的有效时间&#xff0c;数据过期以后&#xff0c;就需要将数据从内存中删除掉。可以按照不同的规则进行删除&#xff0c;这种删除规则就被称之为数据的删除策略&#xff08;数据过期策略…

i已学赋能智慧教育时代的幼儿教育

伴随“教育数字化战略行动”的深入开展,智慧教育正式成为国家战略。智慧教育延伸至家校社教育的每个阶段。当前,为适应智慧教育发展趋势,我国制定了《中国教育现代化2035》《教育部关于加强“三个课堂”应用的指导意见》《教育信息化2.0行动计划》等文件。幼儿作为智慧教育、智…

什么是高级语言、机器语言、汇编语言?什么是编译和解释?

1、高级语言 计算机程序是一种让计算机执行特定任务的方法。程序是由程序员用一种称为编程语言的特殊语言编写的。编程语言有很多种&#xff0c;例如 C、C、Java、Python 等。这些语言被称为高级语言&#xff0c;因为它们更接近人类的自然语言&#xff0c;而不是计算机能够直接…

python基础练习题库实验5

文章目录 题目1代码实验结果题目2代码实验结果题目3代码实验结果![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/6058fb4b66994aed838f920f7fe75706.png)题目4代码实验结果题目总结题目1 编写一个程序,使用while循环语句和字符串格式显示以下精确输出。 例如: …

Linux命令进阶——grep管道命令在查看日志的场景中的使用 具体案例

前言 本篇博客介绍在查看日志的场景中&#xff0c;grep管道命令的使用&#xff0c;并给出了具体的案例。 以下为Linux相关的博客文章列表&#xff1a; Linux——认识Linux的目录结构 & 常用命令 & vim命令 & 权限及其控制 & 防火墙命令 & 自定义命令 &a…

2023年【广东省安全员B证第四批(项目负责人)】证考试及广东省安全员B证第四批(项目负责人)复审模拟考试

题库来源&#xff1a;安全生产模拟考试一点通公众号小程序 2023年广东省安全员B证第四批&#xff08;项目负责人&#xff09;证考试为正在备考广东省安全员B证第四批&#xff08;项目负责人&#xff09;操作证的学员准备的理论考试专题&#xff0c;每个月更新的广东省安全员B证…

SpringBoot——模板引擎及原理

优质博文&#xff1a;IT-BLOG-CN 一、模板引擎的思想 模板是为了将显示与数据分离&#xff0c;模板技术多种多样&#xff0c;但其本质都是将模板文件和数据通过模板引擎生成最终的HTML代码。 二、SpringBoot模板引擎 SpringBoot推荐的模板引擎是Thymeleaf语法简单&#xff0…

如何进行无代码开发?有哪些无代码开发工具和无代码软件开发平台?

无代码开发是指不写代码&#xff0c;通过可视化工具进行应用程序开发。无代码开发让非技术用户通过拖拽和选择等简单操作&#xff0c;就能快速创建应用程序。 如何学习无代码开发 随着科技的不断发展&#xff0c;新的技术和工具不断涌现&#xff0c;无代码开发就是其中一种。掌…

YOLOv5算法进阶改进(5)— 主干网络中引入SCConv | 即插即用的空间和通道维度重构卷积

前言:Hello大家好,我是小哥谈。SCConv是一种用于减少特征冗余的卷积神经网络模块。相对于其他流行的SOTA方法,SCConv可以以更低的计算成本获得更高的准确率。它通过在空间和通道维度上进行重构,从而减少了特征图中的冗余信息。这种模块的设计可以提高卷积神经网络的性能。�…

Redis常用操作及应用(二)

一、Hash结构 1、常用操作 HSET key field value //存储一个哈希表key的键值 HSETNX key field value //存储一个不存在的哈希表key的键值 HMSET key field value [field value ...] //在一个哈希表key中存储多个键值对 HGET key fie…

Java代码的编译与执行过程

一、编译过程 1、javac 编译 Java源代码通过编译器&#xff08;javac&#xff09;编译为字节码文件(.class)。 idea中的 build 和 maven package等指令都可以编译为 .class 2、类加载器(Class Loader) 类加载器负责将类的字节码文件加载到内存中&#xff0c;以便在运行时创…

数据在内存中的存储练习题

数据在内存中的存储练习题 文章目录 数据在内存中的存储练习题1. 练习一2.练习二3. 练习三4. 练习四5. 练习五6. 练习六7. 总结 1. 练习一 #include <stdio.h>int main() {char a -1;signed b -1;unsigned char c -1;printf("a %d b %d c %d", a, b, c)…

人工智能|机器学习——机器学习如何判断模型训练是否充分

一、查看训练日志 训练日志是机器学习中广泛使用的训练诊断工具&#xff0c;每个 epoch 或 iterator 结束后&#xff0c;在训练集和验证集上评估模型&#xff0c;并以折线图的形式显示模型性能和收敛状况。训练期间查看模型的训练日志可用于判断模型训练时的问题&#xff0c;例…