Redis-缓存设计

缓存穿透

缓存穿透是指查询一个根本不存在的数据, 缓存层和存储层都不会命中, 通常出于容错的考虑, 如果从存储层查不到数据则不写入缓存层。

缓存穿透将导致不存在的数据每次请求都要到存储层去查询, 失去了缓存保护后端存储的意义。

造成缓存穿透的基本原因有两个:

第一, 自身业务代码或者数据出现问题。

第二, 一些恶意攻击、 爬虫等造成大量空命中。

缓存穿透问题解决方案:

1、缓存空对象

String get(String key) {// 从缓存中获取数据String cacheValue = cache.get(key);// 缓存为空if (StringUtils.isBlank(cacheValue)) {// 从存储中获取String storageValue = storage.get(key);cache.set(key, storageValue);// 如果存储数据为空, 需要设置一个过期时间(300秒)if (storageValue == null) {cache.expire(key, 60 * 5);}return storageValue;} else {// 缓存非空return cacheValue;}
}

2、布隆过滤器

对于恶意攻击,向服务器请求大量不存在的数据造成的缓存穿透,还可以用布隆过滤器先做一次过滤,对于不存在的数据布隆过滤器一般都能够过滤掉,不让请求再往后端发送。当布隆过滤器说某个值存在时,这个值可能不存在;当它说不存在时,那就肯定不存在。

布隆过滤器就是一个大型的位数组和几个不一样的无偏 hash 函数。所谓无偏就是能够把元素的 hash 值算得比较均匀。

向布隆过滤器中添加 key 时,会使用多个 hash 函数对 key 进行 hash 算得一个整数索引值然后对位数组长度进行取模运算得到一个位置,每个 hash 函数都会算得一个不同的位置。再把位数组的这几个位置都置为 1 就完成了 add 操作。

向布隆过滤器询问 key 是否存在时,跟 add 一样,也会把 hash 的几个位置都算出来,看看位数组中这几个位置是否都为 1,只要有一个位为 0,那么说明布隆过滤器中这个key 不存在。如果都是 1,这并不能说明这个 key 就一定存在,只是极有可能存在,因为这些位被置为 1 可能是因为其它的 key 存在所致。如果这个位数组长度比较大,存在概率就会很大,如果这个位数组长度比较小,存在概率就会降低。

这种方法适用于数据命中不高、 数据相对固定、 实时性低(通常是数据集较大) 的应用场景, 代码维护较为复杂, 但是缓存空间占用很少

可以用redisson实现布隆过滤器,引入依赖:

<dependency><groupId>org.redisson</groupId><artifactId>redisson</artifactId><version>3.6.5</version>
</dependency>

示例伪代码:

package com.redisson;import org.redisson.Redisson;
import org.redisson.api.RBloomFilter;
import org.redisson.api.RedissonClient;
import org.redisson.config.Config;public class RedissonBloomFilter {public static void main(String[] args) {Config config = new Config();config.useSingleServer().setAddress("redis://localhost:6379");//构造RedissonRedissonClient redisson = Redisson.create(config);RBloomFilter<String> bloomFilter = redisson.getBloomFilter("nameList");//初始化布隆过滤器:预计元素为100000000L,误差率为3%,根据这两个参数会计算出底层的bit数组大小bloomFilter.tryInit(100000000L,0.03);//将liu插入到布隆过滤器中bloomFilter.add("liu");//判断下面号码是否在布隆过滤器中System.out.println(bloomFilter.contains("zhang"));//falseSystem.out.println(bloomFilter.contains("guan"));//falseSystem.out.println(bloomFilter.contains("liu"));//true}
}

使用布隆过滤器需要把所有数据提前放入布隆过滤器,并且在增加数据时也要往布隆过滤器里放,布隆过滤器缓存过滤伪代码:

//初始化布隆过滤器
RBloomFilter<String> bloomFilter = redisson.getBloomFilter("nameList");
//初始化布隆过滤器:预计元素为100000000L,误差率为3%
bloomFilter.tryInit(100000000L,0.03);//把所有数据存入布隆过滤器
void init(){for (String key: keys) {bloomFilter.put(key);}
}String get(String key) {// 从布隆过滤器这一级缓存判断下key是否存在Boolean exist = bloomFilter.contains(key);if(!exist){return "";}// 从缓存中获取数据String cacheValue = cache.get(key);// 缓存为空if (StringUtils.isBlank(cacheValue)) {// 从存储中获取String storageValue = storage.get(key);cache.set(key, storageValue);// 如果存储数据为空, 需要设置一个过期时间(300秒)if (storageValue == null) {cache.expire(key, 60 * 5);}return storageValue;} else {// 缓存非空return cacheValue;}
}

注意:布隆过滤器不能删除数据,如果要删除得重新初始化数据。

缓存失效(击穿)

由于大批量缓存在同一时间失效可能导致大量请求同时穿透缓存直达数据库,可能会造成数据库瞬间压力过大甚至挂掉,对于这种情况我们在批量增加缓存时最好将这一批数据的缓存过期时间设置为一个时间段内的不同时间。

示例伪代码:

String get(String key) {// 从缓存中获取数据String cacheValue = cache.get(key);// 缓存为空if (StringUtils.isBlank(cacheValue)) {// 从存储中获取String storageValue = storage.get(key);cache.set(key, storageValue);//设置一个过期时间(300到600之间的一个随机数)int expireTime = new Random().nextInt(300)  + 300;if (storageValue == null) {cache.expire(key, expireTime);}return storageValue;} else {// 缓存非空return cacheValue;}
}

缓存雪崩

缓存雪崩指的是缓存层支撑不住或宕掉后, 流量会像奔逃的野牛一样, 打向后端存储层。

由于缓存层承载着大量请求, 有效地保护了存储层, 但是如果缓存层由于某些原因不能提供服务(比如超大并发过来,缓存层支撑不住,或者由于缓存设计不好,类似大量请求访问bigkey,导致缓存能支撑的并发急剧下降), 于是大量请求都会打到存储层, 存储层的调用量会暴增, 造成存储层也会级联宕机的情况。

预防和解决缓存雪崩问题, 可以从以下三个方面进行着手。

1) 保证缓存层服务高可用性,比如使用Redis Sentinel或Redis Cluster。

2) 依赖隔离组件为后端限流熔断并降级。比如使用Sentinel或Hystrix限流降级组件。

比如服务降级,我们可以针对不同的数据采取不同的处理方式。当业务应用访问的是非核心数据(例如电商商品属性,用户信息等)时,暂时停止从缓存中查询这些数据,而是直接返回预定义的默认降级信息、空值或是错误提示信息;当业务应用访问的是核心数据(例如电商商品库存)时,仍然允许查询缓存,如果缓存缺失,也可以继续通过数据库读取。

3) 提前演练。 在项目上线前, 演练缓存层宕掉后, 应用以及后端的负载情况以及可能出现的问题, 在此基础上做一些预案设定。

热点缓存key重建优化

开发人员使用“缓存+过期时间”的策略既可以加速数据读写, 又保证数据的定期更新, 这种模式基本能够满足绝大部分需求。 但是有两个问题如果同时出现, 可能就会对应用造成致命的危害:

  • 当前key是一个热点key(例如一个热门的娱乐新闻),并发量非常大。

  • 重建缓存不能在短时间完成, 可能是一个复杂计算, 例如复杂的SQL、 多次IO、 多个依赖等。

在缓存失效的瞬间, 有大量线程来重建缓存, 造成后端负载加大, 甚至可能会让应用崩溃。

要解决这个问题主要就是要避免大量线程同时重建缓存。

我们可以利用互斥锁来解决,此方法只允许一个线程重建缓存, 其他线程等待重建缓存的线程执行完, 重新从缓存获取数据即可。

示例伪代码:

String get(String key) {// 从Redis中获取数据String value = redis.get(key);// 如果value为空, 则开始重构缓存if (value == null) {// 只允许一个线程重建缓存, 使用nx, 并设置过期时间exString mutexKey = "mutext:key:" + key;if (redis.set(mutexKey, "1", "ex 180", "nx")) {// 从数据源获取数据value = db.get(key);// 回写Redis, 并设置过期时间redis.setex(key, timeout, value);// 删除key_mutexredis.delete(mutexKey);}// 其他线程休息50毫秒后重试else {Thread.sleep(50);get(key);}}return value;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/170904.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

RocketMq 主题(TOPIC)生产级应用

RocketMq是阿里出品&#xff08;基于MetaQ&#xff09;的开源中间件&#xff0c;已捐赠给Apache基金会并成为Apache的顶级项目。基于java语言实现&#xff0c;十万级数据吞吐量&#xff0c;ms级处理速度&#xff0c;分布式架构&#xff0c;功能强大&#xff0c;扩展性强。 官方…

incast,拥塞控制,内存墙的秘密

数据中心 incast&#xff0c;广域网拥塞&#xff0c;内存墙都是一类问题。 我接触 incast 很久了&#xff0c;大多是帮忙查问题&#xff0c;也解过几例。 我记得有一次在业务几乎总是(在统计学上&#xff0c;几乎和总是属同义强调) tail latency 很大时&#xff0c;我建议在 …

利用chart.js来完成动态网页显示拆线图的效果

<% page language"java" contentType"text/html; charsetUTF-8"pageEncoding"UTF-8"%><%! String list"[一月份, 二月份, 三月份,四月份, 五月份, 六月份, 七月]"; String label"我的一个折线图"; String data &qu…

贝叶斯个性化排序损失函数

贝叶斯个性化排名&#xff08;Bayesian Personalized Ranking, BPR&#xff09;是一种用于推荐系统的机器学习方法&#xff0c;旨在为用户提供个性化的排名列表。BPR的核心思想是通过对用户历史行为数据的分析&#xff0c;对用户可能喜欢和不喜欢的物品对&#xff08;item pair…

迭代器模式

自定义 Counter 结构体类型&#xff0c;并实现迭代器。其他语言的场景&#xff0c;读取数据库行数据时&#xff0c;使用的就是迭代器。我们使用for语言遍历数组&#xff0c;也是一种迭代。 结构体对象实现 Iterator trait&#xff0c;创建自定义的迭代器&#xff0c;只需要实现…

【全栈开发】Blitz.js与RedwoodJS

技术的不断发展是必然的。如果你仔细观察这片土地&#xff0c;你会注意到随着技术的成熟而出现的某些模式。特别是&#xff0c;开发人员一直在努力提高性能&#xff0c;简化开发过程&#xff0c;增强开发人员体验。 在本指南中&#xff0c;我们将分析两个帮助全栈应用程序世界…

航天宏图——宏图1号样例数据0.5米-5米分辨率(上海部分)

简介&#xff1a; 作为航天宏图“女娲星座”建设计划的首发卫星&#xff0c;航天宏图-1号可获取0.5米-5米的分辨率影像&#xff0c;具备高精度地形测绘、高精度形变检测、高分辨率宽幅成像以及三维立体成像等能力&#xff0c;在自然资源、应急管理、水利等行业与领域具有极高的…

python游戏开发pygame初步

文章目录 安装和示例移动物体优化 安装和示例 顾名思义&#xff0c;PyGame就是用来做游戏的Python库&#xff0c;提供了许多游戏开发功能&#xff0c;如图像处理、音频播放、事件处理、碰撞检测等等。从这个角度来说&#xff0c;pygame不仅是一个游戏库&#xff0c;同时也是一…

Redis面试题:redis做为缓存,mysql的数据如何与redis进行同步呢?(双写一致性)

目录 强一致性&#xff1a;延迟双删&#xff0c;读写锁。 弱一致性&#xff1a;使用MQ或者canal实现异步通知 面试官&#xff1a;redis做为缓存&#xff0c;mysql的数据如何与redis进行同步呢&#xff1f;&#xff08;双写一致性&#xff09; 候选人&#xff1a;嗯&#xff…

为什么淘宝取消双12活动?

我是卢松松&#xff0c;点点上面的头像&#xff0c;欢迎关注我哦&#xff01; 淘宝取消双12活动了&#xff0c;这条消息犹如一颗重磅炸弹&#xff0c;在整个电商圈中引发了轩然大波。 不过呢&#xff0c;淘宝为了过度&#xff0c;把双12改了个名字叫“好价节”。估计是官方都…

使用skforecast进行时间序列预测

时间序列预测是数据科学和商业分析中基于历史数据预测未来价值的一项重要技术。它有着广泛的应用&#xff0c;从需求规划、销售预测到计量经济分析。由于Python的多功能性和专业库的可用性&#xff0c;它已经成为一种流行的预测编程语言。其中一个为时间序列预测任务量身定制的…

栈详解(C语言)

文章目录 写在前面1 栈的定义2 栈的初始化3 数据入栈4 数据出栈5 获取栈顶元素6 获取栈元素个数7 判断栈是否为空8 栈的销毁 写在前面 本片文章详细介绍了另外两种存储逻辑关系为 “一对一” 的数据结构——栈和队列中的栈&#xff0c;并使用C语言实现了数组栈。 栈C语言实现源…

【自主探索】基于 rrt_exploration 的单个机器人自主探索建图

文章目录 一、rrt_exploration 介绍1、原理2、主要思想3、拟解决的问题4、优缺点 二、安装环境三、安装与运行1、安装2、运行 四、配置说明1、Robots Network2、Robots frame names in tf3、Robots node and topic names4、Setting up the navigation stack on the robots5、A …

【数据库】执行计划中二元操作对一趟扫描算法的应用,理解代价评估的应用和优化,除了磁盘代价还有CPU计算代价不容忽略

二元操作的一趟算法 ​专栏内容&#xff1a; 手写数据库toadb 本专栏主要介绍如何从零开发&#xff0c;开发的步骤&#xff0c;以及开发过程中的涉及的原理&#xff0c;遇到的问题等&#xff0c;让大家能跟上并且可以一起开发&#xff0c;让每个需要的人成为参与者。 本专栏会定…

C#,《小白学程序》第十九课:随机数(Random)第六,随机生成任意长度的大数(BigInteger)

1 文本格式 using System; using System.Linq; using System.Text; using System.Collections.Generic; /// <summary> /// 大数的&#xff08;加减乘除&#xff09;四则运算、阶乘运算 /// 乘法计算包括小学生算法、Karatsuba和Toom-Cook3算法 /// 除法运算为 Truffer…

Leetcode—167.两数之和 II - 输入有序数组【中等】

2023每日刷题&#xff08;四十一&#xff09; Leetcode—167.两数之和 II - 输入有序数组 实现代码 /*** Note: The returned array must be malloced, assume caller calls free().*/ int* twoSum(int* numbers, int numbersSize, int target, int* returnSize) {*returnSiz…

小程序中的大道理之四--单元测试

在讨论领域模型之前, 先继续说下关于测试方面的内容, 前面为了集中讨论相应主题而对此作了推迟, 下面先补上关于测试方面的. 测试覆盖(Coverage) 先回到之前的一些步骤上, 假设我们现在写好了 getPattern 方法, 而 getLineContent 还处于 TODO 状态, 如下: public String ge…

网络视频播放卡顿原因分析

一、问题描述 某项目通过拉摄像机rtsp流转rtmp/http-flv/ws-flv的方案&#xff0c;使用户可以在网页中观看摄像机的视频画面。在 观看视频时偶发出现卡顿现象。 二、卡顿现象分析和解决 此问题涉及的原因较多&#xff0c;所以得考虑各环节的问题可能性&#xff0c;并根据现场实…

在CentOS 7.9上搭建高性能的FastDFS+Nginx文件服务器集群并实现外部远程访问

文章目录 引言第一部分&#xff1a;FastDFS介绍与安装1.1 FastDFS简介1.2 FastDFS安装1.2.1 安装Tracker Server1.2.2 安装Storage Server 1.3 FastDFS配置1.3.1 配置Tracker Server1.3.2 配置Storage Server1.3.3 启动FastDFS服务 第二部分&#xff1a;Nginx配置2.1 Nginx安装…

Docker容器化部署若依微服务ruoyi-cloud项目

系统环境 接下来的内容以 Ubuntu 22.04.1 操作系统为例。 下载安装Docker Ubuntu hihi-IdeaCentre-GeekPro-15ICK:~$ sudo su [sudo] hi 的密码&#xff1a; roothi-IdeaCentre-GeekPro-15ICK:/home/hi# docker ps 找不到命令 “docker”&#xff0c;但可以通过以下软件包安…