微服务保护 Sentinel

1.初识Sentinel

文章目录

  • 1.初识Sentinel
    • 1.1.雪崩问题及解决方案
      • 1.1.1.雪崩问题
      • 1.1.2.超时处理
      • 1.1.3.仓壁模式
      • 1.1.4.断路器
      • 1.1.5.限流
      • 1.1.6.总结
    • 1.2.服务保护技术对比
    • 1.3.Sentinel介绍和安装
      • 1.3.1.初识Sentinel
      • 1.3.2.安装Sentinel
    • 1.4.微服务整合Sentinel
  • 2.流量控制
    • 2.1.簇点链路
    • 2.1.快速入门
      • 2.1.1.示例
      • 2.1.2.练习:
    • 2.2.流控模式
      • 2.2.1.关联模式
      • 2.2.2.链路模式
        • 1)添加查询商品方法
        • 2)查询订单时,查询商品
        • 3)新增订单,查询商品
        • 4)给查询商品添加资源标记
        • 5)添加流控规则
        • 6)Jmeter测试
      • 2.2.3.总结
    • 2.3.流控效果
      • 2.3.1.warm up
        • 1)配置流控规则:
        • 2)Jmeter测试
      • 2.3.2.排队等待
        • 1)添加流控规则
        • 2)Jmeter测试
      • 2.3.3.总结
    • 2.4.热点参数限流
      • 2.4.1.全局参数限流
      • 2.4.2.热点参数限流
      • 2.4.4.案例
        • 1)标记资源
        • 2)热点参数限流规则
        • 3)Jmeter测试
  • 3.隔离和降级
    • 3.1.FeignClient整合Sentinel
      • 3.1.1.修改配置,开启sentinel功能
      • 3.1.2.编写失败降级逻辑
      • 3.1.3.总结
    • 3.2.线程隔离(舱壁模式)
      • 3.2.1.线程隔离的实现方式
      • 3.2.2.sentinel的线程隔离
        • 1)配置隔离规则
        • 2)Jmeter测试
      • 3.2.3.总结
    • 3.3.熔断降级
      • 3.3.1.慢调用
        • 1)设置慢调用
        • 2)设置熔断规则
        • 3)测试
      • 3.3.2.异常比例、异常数
        • 1)设置异常请求
        • 2)设置熔断规则
        • 3)测试
  • 4.授权规则
    • 4.1.授权规则
      • 4.1.1.基本规则
      • 4.1.2.如何获取origin
      • 4.1.3.给网关添加请求头
      • 4.1.4.配置授权规则
    • 4.2.自定义异常结果
      • 4.2.1.异常类型
      • 4.2.2.自定义异常处理
  • 5.规则持久化
    • 5.1.规则管理模式
      • 5.1.1.pull模式
      • 5.1.2.push模式
    • 5.2.实现push模式

1.1.雪崩问题及解决方案

1.1.1.雪崩问题

微服务中,服务间调用关系错综复杂,一个微服务往往依赖于多个其它微服务。

在这里插入图片描述

如图,如果服务提供者I发生了故障,当前的应用的部分业务因为依赖于服务I,因此也会被阻塞。此时,其它不依赖于服务I的业务似乎不受影响。

在这里插入图片描述

但是,依赖服务I的业务请求被阻塞,用户不会得到响应,则tomcat的这个线程不会释放,于是越来越多的用户请求到来,越来越多的线程会阻塞:

在这里插入图片描述

服务器支持的线程和并发数有限,请求一直阻塞,会导致服务器资源耗尽,从而导致所有其它服务都不可用,那么当前服务也就不可用了。

那么,依赖于当前服务的其它服务随着时间的推移,最终也都会变的不可用,形成级联失败,雪崩就发生了:

在这里插入图片描述

1.1.2.超时处理

解决雪崩问题的常见方式有四种:

•超时处理:设定超时时间,请求超过一定时间没有响应就返回错误信息,不会无休止等待

在这里插入图片描述

1.1.3.仓壁模式

方案2:仓壁模式

仓壁模式来源于船舱的设计:

在这里插入图片描述

船舱都会被隔板分离为多个独立空间,当船体破损时,只会导致部分空间进入,将故障控制在一定范围内,避免整个船体都被淹没。

于此类似,我们可以限定每个业务能使用的线程数,避免耗尽整个tomcat的资源,因此也叫线程隔离。

在这里插入图片描述

1.1.4.断路器

断路器模式:由断路器统计业务执行的异常比例,如果超出阈值则会熔断该业务,拦截访问该业务的一切请求。

断路器会统计访问某个服务的请求数量,异常比例:

在这里插入图片描述

当发现访问服务D的请求异常比例过高时,认为服务D有导致雪崩的风险,会拦截访问服务D的一切请求,形成熔断:

在这里插入图片描述

1.1.5.限流

流量控制:限制业务访问的QPS,避免服务因流量的突增而故障。

在这里插入图片描述

1.1.6.总结

什么是雪崩问题?

  • 微服务之间相互调用,因为调用链中的一个服务故障,引起整个链路都无法访问的情况。

可以认为:

限流是对服务的保护,避免因瞬间高并发流量而导致服务故障,进而避免雪崩。是一种预防措施。

超时处理、线程隔离、降级熔断是在部分服务故障时,将故障控制在一定范围,避免雪崩。是一种补救措施。

1.2.服务保护技术对比

在SpringCloud当中支持多种服务保护技术:

  • Netfix Hystrix
  • Sentinel
  • Resilience4J

早期比较流行的是Hystrix框架,但目前国内实用最广泛的还是阿里巴巴的Sentinel框架,这里我们做下对比:

SentinelHystrix
隔离策略信号量隔离线程池隔离/信号量隔离
熔断降级策略基于慢调用比例或异常比例基于失败比率
实时指标实现滑动窗口滑动窗口(基于 RxJava)
规则配置支持多种数据源支持多种数据源
扩展性多个扩展点插件的形式
基于注解的支持支持支持
限流基于 QPS,支持基于调用关系的限流有限的支持
流量整形支持慢启动、匀速排队模式不支持
系统自适应保护支持不支持
控制台开箱即用,可配置规则、查看秒级监控、机器发现等不完善
常见框架的适配Servlet、Spring Cloud、Dubbo、gRPC 等Servlet、Spring Cloud Netflix

1.3.Sentinel介绍和安装

1.3.1.初识Sentinel

Sentinel是阿里巴巴开源的一款微服务流量控制组件。官网地址:https://sentinelguard.io/zh-cn/index.html

Sentinel 具有以下特征:

丰富的应用场景:Sentinel 承接了阿里巴巴近 10 年的双十一大促流量的核心场景,例如秒杀(即突发流量控制在系统容量可以承受的范围)、消息削峰填谷、集群流量控制、实时熔断下游不可用应用等。

完备的实时监控:Sentinel 同时提供实时的监控功能。您可以在控制台中看到接入应用的单台机器秒级数据,甚至 500 台以下规模的集群的汇总运行情况。

广泛的开源生态:Sentinel 提供开箱即用的与其它开源框架/库的整合模块,例如与 Spring Cloud、Dubbo、gRPC 的整合。您只需要引入相应的依赖并进行简单的配置即可快速地接入 Sentinel。

完善的 SPI 扩展点:Sentinel 提供简单易用、完善的 SPI 扩展接口。您可以通过实现扩展接口来快速地定制逻辑。例如定制规则管理、适配动态数据源等。

1.3.2.安装Sentinel

1)下载

sentinel官方提供了UI控制台,方便我们对系统做限流设置。大家可以在GitHub下载。

课前资料也提供了下载好的jar包:

在这里插入图片描述

2)运行

将jar包放到任意非中文目录,执行命令:

java -jar sentinel-dashboard-1.8.1.jar

如果要修改Sentinel的默认端口、账户、密码,可以通过下列配置:

配置项默认值说明
server.port8080服务端口
sentinel.dashboard.auth.usernamesentinel默认用户名
sentinel.dashboard.auth.passwordsentinel默认密码

例如,修改端口:

java -Dserver.port=8090 -jar sentinel-dashboard-1.8.1.jar

3)访问

访问http://localhost:8080页面,就可以看到sentinel的控制台了:

在这里插入图片描述

需要输入账号和密码,默认都是:sentinel

登录后,发现一片空白,什么都没有:

在这里插入图片描述

这是因为我们还没有与微服务整合。

1.4.微服务整合Sentinel

我们在order-service中整合sentinel,并连接sentinel的控制台,步骤如下:

1)引入sentinel依赖

<!--sentinel-->
<dependency><groupId>com.alibaba.cloud</groupId> <artifactId>spring-cloud-starter-alibaba-sentinel</artifactId>
</dependency>

2)配置控制台

修改application.yaml文件,添加下面内容:

server:port: 8088
spring:cloud: sentinel:transport:dashboard: localhost:8080

3)访问order-service的任意端点

打开浏览器,访问http://localhost:8088/order/101,这样才能触发sentinel的监控。

然后再访问sentinel的控制台,查看效果:

在这里插入图片描述

2.流量控制

雪崩问题虽然有四种方案,但是限流是避免服务因突发的流量而发生故障,是对微服务雪崩问题的预防。我们先学习这种模式。

2.1.簇点链路

当请求进入微服务时,首先会访问DispatcherServlet,然后进入Controller、Service、Mapper,这样的一个调用链就叫做簇点链路。簇点链路中被监控的每一个接口就是一个资源

默认情况下sentinel会监控SpringMVC的每一个端点(Endpoint,也就是controller中的方法),因此SpringMVC的每一个端点(Endpoint)就是调用链路中的一个资源。

例如,我们刚才访问的order-service中的OrderController中的端点:/order/{orderId}

在这里插入图片描述

流控、熔断等都是针对簇点链路中的资源来设置的,因此我们可以点击对应资源后面的按钮来设置规则:

  • 流控:流量控制
  • 降级:降级熔断
  • 热点:热点参数限流,是限流的一种
  • 授权:请求的权限控制

2.1.快速入门

2.1.1.示例

点击资源/order/{orderId}后面的流控按钮,就可以弹出表单。

在这里插入图片描述

表单中可以填写限流规则,如下:

在这里插入图片描述

其含义是限制 /order/{orderId}这个资源的单机QPS为1,即每秒只允许1次请求,超出的请求会被拦截并报错。

2.1.2.练习:

需求:给 /order/{orderId}这个资源设置流控规则,QPS不能超过 5,然后测试。

1)首先在sentinel控制台添加限流规则

在这里插入图片描述

2)利用jmeter测试

如果没有用过jmeter,可以参考课之前提供的文章《Jmeter快速入门》

打开jmeter,进行测试样例:

在这里插入图片描述

选择:

在这里插入图片描述

20个用户,2秒内运行完,QPS是10,超过了5.

选中流控入门,QPS<5右键运行:

在这里插入图片描述

注意,不要点击菜单中的执行按钮来运行。

结果:

在这里插入图片描述

可以看到,成功的请求每次只有5个

2.2.流控模式

在添加限流规则时,点击高级选项,可以选择三种流控模式

  • 直接:统计当前资源的请求,触发阈值时对当前资源直接限流,也是默认的模式
  • 关联:统计与当前资源相关的另一个资源,触发阈值时,对当前资源限流
  • 链路:统计从指定链路访问到本资源的请求,触发阈值时,对指定链路限流

在这里插入图片描述

快速入门测试的就是直接模式。

2.2.1.关联模式

关联模式:统计与当前资源相关的另一个资源,触发阈值时,对当前资源限流

配置规则

在这里插入图片描述

语法说明:当/write资源访问量触发阈值时,就会对/read资源限流,避免影响/write资源。

使用场景:比如用户支付时需要修改订单状态,同时用户要查询订单。查询和修改操作会争抢数据库锁,产生竞争。业务需求是优先支付和更新订单的业务,因此当修改订单业务触发阈值时,需要对查询订单业务限流。

需求说明

  • 在OrderController新建两个端点:/order/query和/order/update,无需实现业务

  • 配置流控规则,当/order/ update资源被访问的QPS超过5时,对/order/query请求限流

1)定义/order/query端点,模拟订单查询

@GetMapping("/query")
public String queryOrder() {return "查询订单成功";
}

2)定义/order/update端点,模拟订单更新

@GetMapping("/update")
public String updateOrder() {return "更新订单成功";
}

重启服务,查看sentinel控制台的簇点链路:

在这里插入图片描述

3)配置流控规则

对哪个端点限流,就点击哪个端点后面的按钮。我们是对订单查询/order/query限流,因此点击它后面的按钮:

在这里插入图片描述

在表单中填写流控规则:

在这里插入图片描述

4)在Jmeter测试

选择《流控模式-关联》:

在这里插入图片描述

可以看到1000个用户,100秒,因此QPS为10,超过了我们设定的阈值:5

查看http请求:

在这里插入图片描述

请求的目标是/order/update,这样这个断点就会触发阈值。

但限流的目标是/order/query,我们在浏览器访问,可以发现:

在这里插入图片描述

确实被限流了。

5)总结

在这里插入图片描述

2.2.2.链路模式

链路模式:只针对从指定链路访问到本资源的请求做统计,判断是否超过阈值。

配置示例

例如有两条请求链路:

  • /test1 --> /common

  • /test2 --> /common

如果只希望统计从/test2进入到/common的请求,则可以这样配置:

在这里插入图片描述

实战案例

需求:有查询订单和创建订单业务,两者都需要查询商品。针对从查询订单进入到查询商品的请求统计,并设置限流。

步骤:

  1. 在OrderService中添加一个queryGoods方法,不用实现业务

  2. 在OrderController中,改造/order/query端点,调用OrderService中的queryGoods方法

  3. 在OrderController中添加一个/order/save的端点,调用OrderService的queryGoods方法

  4. 给queryGoods设置限流规则,从/order/query进入queryGoods的方法限制QPS必须小于2

实现:

1)添加查询商品方法

在order-service服务中,给OrderService类添加一个queryGoods方法:

public void queryGoods(){System.err.println("查询商品");
}
2)查询订单时,查询商品

在order-service的OrderController中,修改/order/query端点的业务逻辑:

@GetMapping("/query")
public String queryOrder() {// 查询商品orderService.queryGoods();// 查询订单System.out.println("查询订单");return "查询订单成功";
}
3)新增订单,查询商品

在order-service的OrderController中,修改/order/save端点,模拟新增订单:

@GetMapping("/save")
public String saveOrder() {// 查询商品orderService.queryGoods();// 查询订单System.err.println("新增订单");return "新增订单成功";
}
4)给查询商品添加资源标记

默认情况下,OrderService中的方法是不被Sentinel监控的,需要我们自己通过注解来标记要监控的方法。

给OrderService的queryGoods方法添加@SentinelResource注解:

@SentinelResource("goods")
public void queryGoods(){System.err.println("查询商品");
}

链路模式中,是对不同来源的两个链路做监控。但是sentinel默认会给进入SpringMVC的所有请求设置同一个root资源,会导致链路模式失效。

我们需要关闭这种对SpringMVC的资源聚合,修改order-service服务的application.yml文件:

spring:cloud:sentinel:web-context-unify: false # 关闭context整合

重启服务,访问/order/query和/order/save,可以查看到sentinel的簇点链路规则中,出现了新的资源:

在这里插入图片描述

5)添加流控规则

点击goods资源后面的流控按钮,在弹出的表单中填写下面信息:

在这里插入图片描述

只统计从/order/query进入/goods的资源,QPS阈值为2,超出则被限流。

6)Jmeter测试

选择《流控模式-链路》:

在这里插入图片描述

可以看到这里200个用户,50秒内发完,QPS为4,超过了我们设定的阈值2

一个http请求是访问/order/save:

在这里插入图片描述

运行的结果:

在这里插入图片描述

完全不受影响。

另一个是访问/order/query:

在这里插入图片描述

运行结果:

在这里插入图片描述

每次只有2个通过。

2.2.3.总结

流控模式有哪些?

•直接:对当前资源限流

•关联:高优先级资源触发阈值,对低优先级资源限流。

•链路:阈值统计时,只统计从指定资源进入当前资源的请求,是对请求来源的限流

2.3.流控效果

在流控的高级选项中,还有一个流控效果选项:

在这里插入图片描述

流控效果是指请求达到流控阈值时应该采取的措施,包括三种:

  • 快速失败:达到阈值后,新的请求会被立即拒绝并抛出FlowException异常。是默认的处理方式。

  • warm up:预热模式,对超出阈值的请求同样是拒绝并抛出异常。但这种模式阈值会动态变化,从一个较小值逐渐增加到最大阈值。

  • 排队等待:让所有的请求按照先后次序排队执行,两个请求的间隔不能小于指定时长

2.3.1.warm up

阈值一般是一个微服务能承担的最大QPS,但是一个服务刚刚启动时,一切资源尚未初始化(冷启动),如果直接将QPS跑到最大值,可能导致服务瞬间宕机。

warm up也叫预热模式,是应对服务冷启动的一种方案。请求阈值初始值是 maxThreshold / coldFactor,持续指定时长后,逐渐提高到maxThreshold值。而coldFactor的默认值是3.

例如,我设置QPS的maxThreshold为10,预热时间为5秒,那么初始阈值就是 10 / 3 ,也就是3,然后在5秒后逐渐增长到10.

在这里插入图片描述

案例

需求:给/order/{orderId}这个资源设置限流,最大QPS为10,利用warm up效果,预热时长为5秒

1)配置流控规则:

在这里插入图片描述

2)Jmeter测试

选择《流控效果,warm up》:

在这里插入图片描述

QPS为10.

刚刚启动时,大部分请求失败,成功的只有3个,说明QPS被限定在3:

在这里插入图片描述

随着时间推移,成功比例越来越高:

在这里插入图片描述

到Sentinel控制台查看实时监控:

在这里插入图片描述

一段时间后:

在这里插入图片描述

2.3.2.排队等待

当请求超过QPS阈值时,快速失败和warm up 会拒绝新的请求并抛出异常。

而排队等待则是让所有请求进入一个队列中,然后按照阈值允许的时间间隔依次执行。后来的请求必须等待前面执行完成,如果请求预期的等待时间超出最大时长,则会被拒绝。

工作原理

例如:QPS = 5,意味着每200ms处理一个队列中的请求;timeout = 2000,意味着预期等待时长超过2000ms的请求会被拒绝并抛出异常。

那什么叫做预期等待时长呢?

比如现在一下子来了12 个请求,因为每200ms执行一个请求,那么:

  • 第6个请求的预期等待时长 = 200 * (6 - 1) = 1000ms
  • 第12个请求的预期等待时长 = 200 * (12-1) = 2200ms

现在,第1秒同时接收到10个请求,但第2秒只有1个请求,此时QPS的曲线这样的:

在这里插入图片描述

如果使用队列模式做流控,所有进入的请求都要排队,以固定的200ms的间隔执行,QPS会变的很平滑:

在这里插入图片描述

平滑的QPS曲线,对于服务器来说是更友好的。

案例

需求:给/order/{orderId}这个资源设置限流,最大QPS为10,利用排队的流控效果,超时时长设置为5s

1)添加流控规则

在这里插入图片描述

2)Jmeter测试

选择《流控效果,队列》:

在这里插入图片描述

QPS为15,已经超过了我们设定的10。

如果是之前的 快速失败、warmup模式,超出的请求应该会直接报错。

但是我们看看队列模式的运行结果:

在这里插入图片描述

全部都通过了。

再去sentinel查看实时监控的QPS曲线:

在这里插入图片描述

QPS非常平滑,一致保持在10,但是超出的请求没有被拒绝,而是放入队列。因此响应时间(等待时间)会越来越长。

当队列满了以后,才会有部分请求失败:

在这里插入图片描述

2.3.3.总结

流控效果有哪些?

  • 快速失败:QPS超过阈值时,拒绝新的请求

  • warm up: QPS超过阈值时,拒绝新的请求;QPS阈值是逐渐提升的,可以避免冷启动时高并发导致服务宕机。

  • 排队等待:请求会进入队列,按照阈值允许的时间间隔依次执行请求;如果请求预期等待时长大于超时时间,直接拒绝

2.4.热点参数限流

之前的限流是统计访问某个资源的所有请求,判断是否超过QPS阈值。而热点参数限流是分别统计参数值相同的请求,判断是否超过QPS阈值。

2.4.1.全局参数限流

例如,一个根据id查询商品的接口:

在这里插入图片描述

访问/goods/{id}的请求中,id参数值会有变化,热点参数限流会根据参数值分别统计QPS,统计结果:

在这里插入图片描述

当id=1的请求触发阈值被限流时,id值不为1的请求不受影响。

配置示例:

在这里插入图片描述

代表的含义是:对hot这个资源的0号参数(第一个参数)做统计,每1秒相同参数值的请求数不能超过5

2.4.2.热点参数限流

刚才的配置中,对查询商品这个接口的所有商品一视同仁,QPS都限定为5.

而在实际开发中,可能部分商品是热点商品,例如秒杀商品,我们希望这部分商品的QPS限制与其它商品不一样,高一些。那就需要配置热点参数限流的高级选项了:

在这里插入图片描述

结合上一个配置,这里的含义是对0号的long类型参数限流,每1秒相同参数的QPS不能超过5,有两个例外:

•如果参数值是100,则每1秒允许的QPS为10

•如果参数值是101,则每1秒允许的QPS为15

2.4.4.案例

案例需求:给/order/{orderId}这个资源添加热点参数限流,规则如下:

•默认的热点参数规则是每1秒请求量不超过2

•给102这个参数设置例外:每1秒请求量不超过4

•给103这个参数设置例外:每1秒请求量不超过10

注意事项:热点参数限流对默认的SpringMVC资源无效,需要利用@SentinelResource注解标记资源

1)标记资源

给order-service中的OrderController中的/order/{orderId}资源添加注解:

在这里插入图片描述

2)热点参数限流规则

访问该接口,可以看到我们标记的hot资源出现了:

在这里插入图片描述

这里不要点击hot后面的按钮,页面有BUG

点击左侧菜单中热点规则菜单:

在这里插入图片描述

点击新增,填写表单:

在这里插入图片描述

3)Jmeter测试

选择《热点参数限流 QPS1》:

在这里插入图片描述

这里发起请求的QPS为5.

包含3个http请求:

普通参数,QPS阈值为2

在这里插入图片描述

运行结果:

在这里插入图片描述

例外项,QPS阈值为4

在这里插入图片描述

运行结果:

在这里插入图片描述

例外项,QPS阈值为10

在这里插入图片描述

运行结果:

在这里插入图片描述

3.隔离和降级

限流是一种预防措施,虽然限流可以尽量避免因高并发而引起的服务故障,但服务还会因为其它原因而故障。

而要将这些故障控制在一定范围,避免雪崩,就要靠线程隔离(舱壁模式)和熔断降级手段了。

线程隔离之前讲到过:调用者在调用服务提供者时,给每个调用的请求分配独立线程池,出现故障时,最多消耗这个线程池内资源,避免把调用者的所有资源耗尽。

在这里插入图片描述

熔断降级:是在调用方这边加入断路器,统计对服务提供者的调用,如果调用的失败比例过高,则熔断该业务,不允许访问该服务的提供者了。

在这里插入图片描述
-20210715173428073.png&pos_id=img-ghtnUYTn-1700744619284)

可以看到,不管是线程隔离还是熔断降级,都是对客户端(调用方)的保护。需要在调用方 发起远程调用时做线程隔离、或者服务熔断。

而我们的微服务远程调用都是基于Feign来完成的,因此我们需要将Feign与Sentinel整合,在Feign里面实现线程隔离和服务熔断。

3.1.FeignClient整合Sentinel

SpringCloud中,微服务调用都是通过Feign来实现的,因此做客户端保护必须整合Feign和Sentinel。

3.1.1.修改配置,开启sentinel功能

修改OrderService的application.yml文件,开启Feign的Sentinel功能:

feign:sentinel:enabled: true # 开启feign对sentinel的支持

3.1.2.编写失败降级逻辑

业务失败后,不能直接报错,而应该返回用户一个友好提示或者默认结果,这个就是失败降级逻辑。

给FeignClient编写失败后的降级逻辑

①方式一:FallbackClass,无法对远程调用的异常做处理

②方式二:FallbackFactory,可以对远程调用的异常做处理,我们选择这种

这里我们演示方式二的失败降级处理。

步骤一:在feing-api项目中定义类,实现FallbackFactory:

在这里插入图片描述
Fimage-20210716122403502.png&pos_id=img-ejkvPBg5-1700744619285)

代码:

package cn.itcast.feign.clients.fallback;import cn.itcast.feign.clients.UserClient;
import cn.itcast.feign.pojo.User;
import feign.hystrix.FallbackFactory;
import lombok.extern.slf4j.Slf4j;@Slf4j
public class UserClientFallbackFactory implements FallbackFactory<UserClient> {@Overridepublic UserClient create(Throwable throwable) {return new UserClient() {@Overridepublic User findById(Long id) {log.error("查询用户异常", throwable);return new User();}};}
}

步骤二:在feing-api项目中的DefaultFeignConfiguration类中将UserClientFallbackFactory注册为一个Bean:

@Bean
public UserClientFallbackFactory userClientFallbackFactory(){return new UserClientFallbackFactory();
}

步骤三:在feing-api项目中的UserClient接口中使用UserClientFallbackFactory:

import cn.itcast.feign.clients.fallback.UserClientFallbackFactory;
import cn.itcast.feign.pojo.User;
import org.springframework.cloud.openfeign.FeignClient;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.PathVariable;@FeignClient(value = "userservice", fallbackFactory = UserClientFallbackFactory.class)
public interface UserClient {@GetMapping("/user/{id}")User findById(@PathVariable("id") Long id);
}

重启后,访问一次订单查询业务,然后查看sentinel控制台,可以看到新的簇点链路:

在这里插入图片描述

3.1.3.总结

Sentinel支持的雪崩解决方案:

  • 线程隔离(仓壁模式)
  • 降级熔断

Feign整合Sentinel的步骤:

  • 在application.yml中配置:feign.sentienl.enable=true
  • 给FeignClient编写FallbackFactory并注册为Bean
  • 将FallbackFactory配置到FeignClient

3.2.线程隔离(舱壁模式)

3.2.1.线程隔离的实现方式

线程隔离有两种方式实现:

  • 线程池隔离

  • 信号量隔离(Sentinel默认采用)

如图:

在这里插入图片描述

线程池隔离:给每个服务调用业务分配一个线程池,利用线程池本身实现隔离效果

信号量隔离:不创建线程池,而是计数器模式,记录业务使用的线程数量,达到信号量上限时,禁止新的请求。

两者的优缺点:

在这里插入图片描述

3.2.2.sentinel的线程隔离

用法说明

在添加限流规则时,可以选择两种阈值类型:

在这里插入图片描述
image-20210716123411217.png&pos_id=img-mEJMTLLP-1700744619286)

  • QPS:就是每秒的请求数,在快速入门中已经演示过

  • 线程数:是该资源能使用用的tomcat线程数的最大值。也就是通过限制线程数量,实现线程隔离(舱壁模式)。

案例需求:给 order-service服务中的UserClient的查询用户接口设置流控规则,线程数不能超过 2。然后利用jemeter测试。

1)配置隔离规则

选择feign接口后面的流控按钮:

在这里插入图片描述

填写表单:

在这里插入图片描述

2)Jmeter测试

选择《阈值类型-线程数<2》:

在这里插入图片描述

一次发生10个请求,有较大概率并发线程数超过2,而超出的请求会走之前定义的失败降级逻辑。

查看运行结果:

在这里插入图片描述

发现虽然结果都是通过了,不过部分请求得到的响应是降级返回的null信息。

3.2.3.总结

线程隔离的两种手段是?

  • 信号量隔离

  • 线程池隔离

信号量隔离的特点是?

  • 基于计数器模式,简单,开销小

线程池隔离的特点是?

  • 基于线程池模式,有额外开销,但隔离控制更强

3.3.熔断降级

熔断降级是解决雪崩问题的重要手段。其思路是由断路器统计服务调用的异常比例、慢请求比例,如果超出阈值则会熔断该服务。即拦截访问该服务的一切请求;而当服务恢复时,断路器会放行访问该服务的请求。

断路器控制熔断和放行是通过状态机来完成的:

在这里插入图片描述

状态机包括三个状态:

  • closed:关闭状态,断路器放行所有请求,并开始统计异常比例、慢请求比例。超过阈值则切换到open状态
  • open:打开状态,服务调用被熔断,访问被熔断服务的请求会被拒绝,快速失败,直接走降级逻辑。Open状态5秒后会进入half-open状态
  • half-open:半开状态,放行一次请求,根据执行结果来判断接下来的操作。
    • 请求成功:则切换到closed状态
    • 请求失败:则切换到open状态

断路器熔断策略有三种:慢调用、异常比例、异常数

3.3.1.慢调用

慢调用:业务的响应时长(RT)大于指定时长的请求认定为慢调用请求。在指定时间内,如果请求数量超过设定的最小数量,慢调用比例大于设定的阈值,则触发熔断。

例如:

在这里插入图片描述

解读:RT超过500ms的调用是慢调用,统计最近10000ms内的请求,如果请求量超过10次,并且慢调用比例不低于0.5,则触发熔断,熔断时长为5秒。然后进入half-open状态,放行一次请求做测试。

案例

需求:给 UserClient的查询用户接口设置降级规则,慢调用的RT阈值为50ms,统计时间为1秒,最小请求数量为5,失败阈值比例为0.4,熔断时长为5

1)设置慢调用

修改user-service中的/user/{id}这个接口的业务。通过休眠模拟一个延迟时间:

在这里插入图片描述

此时,orderId=101的订单,关联的是id为1的用户,调用时长为60ms:

在这里插入图片描述

orderId=102的订单,关联的是id为2的用户,调用时长为非常短;

在这里插入图片描述

2)设置熔断规则

下面,给feign接口设置降级规则:

在这里插入图片描述

规则:

在这里插入图片描述

超过50ms的请求都会被认为是慢请求

3)测试

在浏览器访问:http://localhost:8088/order/101,快速刷新5次,可以发现:

在这里插入图片描述

触发了熔断,请求时长缩短至5ms,快速失败了,并且走降级逻辑,返回的null

在浏览器访问:http://localhost:8088/order/102,竟然也被熔断了:

在这里插入图片描述

3.3.2.异常比例、异常数

异常比例或异常数:统计指定时间内的调用,如果调用次数超过指定请求数,并且出现异常的比例达到设定的比例阈值(或超过指定异常数),则触发熔断。

例如,一个异常比例设置:

在这里插入图片描述

解读:统计最近1000ms内的请求,如果请求量超过10次,并且异常比例不低于0.4,则触发熔断。

一个异常数设置:

在这里插入图片描述

解读:统计最近1000ms内的请求,如果请求量超过10次,并且异常比例不低于2次,则触发熔断。

案例

需求:给 UserClient的查询用户接口设置降级规则,统计时间为1秒,最小请求数量为5,失败阈值比例为0.4,熔断时长为5s

1)设置异常请求

首先,修改user-service中的/user/{id}这个接口的业务。手动抛出异常,以触发异常比例的熔断:

在这里插入图片描述

也就是说,id 为 2时,就会触发异常

2)设置熔断规则

下面,给feign接口设置降级规则:

在这里插入图片描述

规则:

在这里插入图片描述

在5次请求中,只要异常比例超过0.4,也就是有2次以上的异常,就会触发熔断。

3)测试

在浏览器快速访问:http://localhost:8088/order/102,快速刷新5次,触发熔断:

在这里插入图片描述

此时,我们去访问本来应该正常的103:

在这里插入图片描述

4.授权规则

授权规则可以对请求方来源做判断和控制。

4.1.授权规则

4.1.1.基本规则

授权规则可以对调用方的来源做控制,有白名单和黑名单两种方式。

  • 白名单:来源(origin)在白名单内的调用者允许访问

  • 黑名单:来源(origin)在黑名单内的调用者不允许访问

点击左侧菜单的授权,可以看到授权规则:

在这里插入图片描述

  • 资源名:就是受保护的资源,例如/order/{orderId}

  • 流控应用:是来源者的名单,

    • 如果是勾选白名单,则名单中的来源被许可访问。
    • 如果是勾选黑名单,则名单中的来源被禁止访问。

比如:

在这里插入图片描述

我们允许请求从gateway到order-service,不允许浏览器访问order-service,那么白名单中就要填写网关的来源名称(origin)

4.1.2.如何获取origin

Sentinel是通过RequestOriginParser这个接口的parseOrigin来获取请求的来源的。

public interface RequestOriginParser {/*** 从请求request对象中获取origin,获取方式自定义*/String parseOrigin(HttpServletRequest request);
}

这个方法的作用就是从request对象中,获取请求者的origin值并返回。

默认情况下,sentinel不管请求者从哪里来,返回值永远是default,也就是说一切请求的来源都被认为是一样的值default。

因此,我们需要自定义这个接口的实现,让不同的请求,返回不同的origin

例如order-service服务中,我们定义一个RequestOriginParser的实现类:

package cn.itcast.order.sentinel;import com.alibaba.csp.sentinel.adapter.spring.webmvc.callback.RequestOriginParser;
import org.springframework.stereotype.Component;
import org.springframework.util.StringUtils;import javax.servlet.http.HttpServletRequest;@Component
public class HeaderOriginParser implements RequestOriginParser {@Overridepublic String parseOrigin(HttpServletRequest request) {// 1.获取请求头String origin = request.getHeader("origin");// 2.非空判断if (StringUtils.isEmpty(origin)) {origin = "blank";}return origin;}
}

我们会尝试从request-header中获取origin值。

4.1.3.给网关添加请求头

既然获取请求origin的方式是从reques-header中获取origin值,我们必须让所有从gateway路由到微服务的请求都带上origin头

这个需要利用之前学习的一个GatewayFilter来实现,AddRequestHeaderGatewayFilter。

修改gateway服务中的application.yml,添加一个defaultFilter:

spring:cloud:gateway:default-filters:- AddRequestHeader=origin,gatewayroutes:# ...略

这样,从gateway路由的所有请求都会带上origin头,值为gateway。而从其它地方到达微服务的请求则没有这个头。

4.1.4.配置授权规则

接下来,我们添加一个授权规则,放行origin值为gateway的请求。

在这里插入图片描述

配置如下:

在这里插入图片描述

现在,我们直接跳过网关,访问order-service服务:

在这里插入图片描述

通过网关访问:

在这里插入图片描述

4.2.自定义异常结果

默认情况下,发生限流、降级、授权拦截时,都会抛出异常到调用方。异常结果都是flow limmiting(限流)。这样不够友好,无法得知是限流还是降级还是授权拦截。

4.2.1.异常类型

而如果要自定义异常时的返回结果,需要实现BlockExceptionHandler接口:

public interface BlockExceptionHandler {/*** 处理请求被限流、降级、授权拦截时抛出的异常:BlockException*/void handle(HttpServletRequest request, HttpServletResponse response, BlockException e) throws Exception;
}

这个方法有三个参数:

  • HttpServletRequest request:request对象
  • HttpServletResponse response:response对象
  • BlockException e:被sentinel拦截时抛出的异常

这里的BlockException包含多个不同的子类:

异常说明
FlowException限流异常
ParamFlowException热点参数限流的异常
DegradeException降级异常
AuthorityException授权规则异常
SystemBlockException系统规则异常

4.2.2.自定义异常处理

下面,我们就在order-service定义一个自定义异常处理类:

package cn.itcast.order.sentinel;import com.alibaba.csp.sentinel.adapter.spring.webmvc.callback.BlockExceptionHandler;
import com.alibaba.csp.sentinel.slots.block.BlockException;
import com.alibaba.csp.sentinel.slots.block.authority.AuthorityException;
import com.alibaba.csp.sentinel.slots.block.degrade.DegradeException;
import com.alibaba.csp.sentinel.slots.block.flow.FlowException;
import com.alibaba.csp.sentinel.slots.block.flow.param.ParamFlowException;
import org.springframework.stereotype.Component;import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;@Component
public class SentinelExceptionHandler implements BlockExceptionHandler {@Overridepublic void handle(HttpServletRequest request, HttpServletResponse response, BlockException e) throws Exception {String msg = "未知异常";int status = 429;if (e instanceof FlowException) {msg = "请求被限流了";} else if (e instanceof ParamFlowException) {msg = "请求被热点参数限流";} else if (e instanceof DegradeException) {msg = "请求被降级了";} else if (e instanceof AuthorityException) {msg = "没有权限访问";status = 401;}response.setContentType("application/json;charset=utf-8");response.setStatus(status);response.getWriter().println("{\"msg\": " + msg + ", \"status\": " + status + "}");}
}

重启测试,在不同场景下,会返回不同的异常消息.

限流:

在这里插入图片描述

授权拦截时:

在这里插入图片描述

5.规则持久化

现在,sentinel的所有规则都是内存存储,重启后所有规则都会丢失。在生产环境下,我们必须确保这些规则的持久化,避免丢失。

5.1.规则管理模式

规则是否能持久化,取决于规则管理模式,sentinel支持三种规则管理模式:

  • 原始模式:Sentinel的默认模式,将规则保存在内存,重启服务会丢失。
  • pull模式
  • push模式

5.1.1.pull模式

pull模式:控制台将配置的规则推送到Sentinel客户端,而客户端会将配置规则保存在本地文件或数据库中。以后会定时去本地文件或数据库中查询,更新本地规则。

在这里插入图片描述

5.1.2.push模式

push模式:控制台将配置规则推送到远程配置中心,例如Nacos。Sentinel客户端监听Nacos,获取配置变更的推送消息,完成本地配置更新。

在这里插入图片描述

5.2.实现push模式

详细步骤可以参考前文章资料的《sentinel规则持久化》:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/166865.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

MacM1(ARM)安装Protocol Buffers

MacM1(ARM)安装Protocol Buffers 本文目录 MacM1(ARM)安装Protocol Buffers3.21之前版本安装使用configure3.22之后版本安装使用cmake使用编译后的版本 protobuf下载地址&#xff1a;https://github.com/protocolbuffers/protobuf/releases 在运行./autogen.sh或./configure命…

curl添加https服务

CURL支持的通信协议有FTP、FTPS、HTTP、HTTPS、TFTP、SFTP、Gopher、SCP、Telnet、DICT、FILE、LDAP、LDAPS、IMAP、POP3、SMTP和RTSP。 首选删除系统自带的openssl&#xff0c;因为他只有可执行程序和库&#xff0c;没有头文件。 sudo apt-get remove openssl openssl官网&am…

CentOS7磁盘挂载

1 引言 本文主要讲述CentOS7磁盘挂载相关知识点和操作。 2 磁盘挂载 步骤1&#xff1a; 查看机器所挂硬盘及分区情况 fdisk -l查询结果&#xff1a; 由上图可以看到该结果包含&#xff1a;硬盘名称、硬盘大小等信息。 属性解释说明Disk /dev/vda硬盘名称53.7G磁盘大…

6S精益管理必备装备降低物料损耗

在工厂生产环境中&#xff0c;设备管理是确保生产效率和质量的关键因素之一。6S管理方法是一种源自日本的管理体系&#xff0c;旨在通过整顿、整理、清扫、清洁、素养、遵守六个步骤&#xff0c;实现工作环境的优化和管理的高效。 仓库管理中&#xff0c;库存损耗一直是企业面…

分布式篇---第四篇

系列文章目录 文章目录 系列文章目录前言一、分布式ID生成有几种方案?二、幂等解决方法有哪些?三、常见负载均衡算法有哪些?前言 前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站,这篇文章男女通用,看懂了就去分享给…

多回路交流三相单相电压电流电量监测开口式互感器适用多种环境用电能耗监控

1 产品概述 多回路交流无线电压电流传感器/电量采集监测仪搭配多路开口式互感器&#xff0c;可以监控采集三相电压、电流、功率和电量等信息&#xff0c;可用于能耗采集监控。支持RS485和4G网络接口&#xff0c;数据可以对接客户指定的第三方云平台。本产品可实现单相/三相用电…

Spring事务的实现方式和实现原理;事务声明的方式,Spring的事务传播行为,spring事务的实现原理

Spring事务的实现方式和实现原理 Spring事务的本质其实就是数据库对事务的支持&#xff0c;没有数据库的事务支持&#xff0c;spring是无法提供事务功能的。真正的数据库层的事务提交和回滚是通过binlog或者redo log实现的。 什么是事务 数据库事务是指作为单个逻辑工作单元执…

Co-DETR:DETRs与协同混分配训练论文学习笔记

论文地址&#xff1a;https://arxiv.org/pdf/2211.12860.pdf 代码地址&#xff1a; GitHub - Sense-X/Co-DETR: [ICCV 2023] DETRs with Collaborative Hybrid Assignments Training 摘要 作者提出了一种新的协同混合任务训练方案&#xff0c;即Co-DETR&#xff0c;以从多种标…

gmapping仿真

文章目录 获取源码安装依赖项编译简单场景运行gmapping开启键盘控制通过launch文件来启动gmappingGmapping建图的参数设置地图的保存和加载参考 获取源码 cd ~/catkin_ws/src/ git clone https://gitcode.com/weixin_42990464/wpr_simulation.git git clone https://gitcode.c…

【开源】基于Vue.js的农村物流配送系统的设计和实现

项目编号&#xff1a; S 024 &#xff0c;文末获取源码。 \color{red}{项目编号&#xff1a;S024&#xff0c;文末获取源码。} 项目编号&#xff1a;S024&#xff0c;文末获取源码。 目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 系统登录、注册界面2.2 系统功能2.2…

小程序:用户查找英语单词的意思 ← Python字典

【程序分析】 ● 字典中的条目是没有顺序的。 ● 可以对字典使用如下方法&#xff1a; keys()、values()、 items()、 clear()、 get(key)、 pop(key) 和popitem()【程序代码】 dictionary{"dog":"狗","apple":"苹果","banana&q…

Java字节码指令集概述及分类详解

Java全能学习面试指南&#xff1a;https://javaxiaobear.cn 1、字节码指令集与解析概述 Java字节码对于虚拟机&#xff0c;就好像汇编语言对于计算机&#xff0c;属于基本执行指令。 Java 虚拟机的指令由一个字节长度的、代表着某种特定操作含义的数字&#xff08;称为操作码&a…

医院供暖换热站远程监控案例

医院供暖换热站远程监控案例 本文针对医院换热站远程监控系统存在的问题&#xff0c;提出了一种基于物联网技术的解决方案。通过使用云平台功能&#xff0c;实现对换热站设备的远程监控和管理&#xff0c;提高系统运行效率&#xff0c;降低运维成本。 一&#xff0e;痛点 1、…

C语言——深入理解指针(1)

目录 1.内存与地址 1.1 什么是内存 1.2 编址 2. 指针的变量和地址 2.1 取地址&#xff08;&&#xff09; 2.2 指针变量 2.3 解引用 2.4 指针变量大小 3. 指针变量类型存在的意义 3.1 不同类型指针的解引用 3.2 指针对整数的运算&#xff08;&#xff0c;-&#…

(10)ATF MMU转换表

MMU简介 MMU&#xff08;内存管理单元&#xff09;负责将软件使用的虚拟地址转换为内存系统中使用的物理地址。MMU包括两个模块&#xff1a;TLB&#xff08;Translation Lookaside Buffer&#xff09;和TWU&#xff08;Table Walk Unit&#xff09;。TLB缓存最近使用的转换&am…

Spring Beans;Spring Bean的生命周期;spring Bean的作用域,spring处理线程并发问题

文章目录 Spring Beans请解释Spring Bean的生命周期解释Spring支持的几种bean的作用域Spring容器中的bean可以分为5个范围&#xff1a; Spring如何处理线程并发问题&#xff1f; 在现在的项目开发中经常使用到spring bean&#xff0c;那么来谈谈spring bean的生命周期&#xff…

APP软件线上排查方法

在线上环境中排查APP软件的问题是一项关键任务&#xff0c;需要使用一系列方法和工具来识别、定位和解决问题。以下是一些建议的排查方法&#xff0c;希望对大家有所帮助。北京木奇移动技术有限公司&#xff0c;专业的软件外包开发公司&#xff0c;欢迎交流合作。 1.监控和日志…

linux如何查看文件的hash数值

在Linux系统中&#xff0c;你可以使用各种工具来查看文件的哈希值。下面是一些常见的方法&#xff1a; md5sum命令&#xff1a; md5sum 文件名例如&#xff1a; md5sum example.txtsha1sum命令&#xff1a; sha1sum 文件名例如&#xff1a; sha1sum example.txtsha256sum命令&a…

代码规范有用吗?听听100W年薪谷歌大佬怎么说!

谷歌内部的 python 代码规范 熟悉 python 一般都会努力遵循 pep8 规范&#xff0c;也会有一些公司制定内部的代码规范。大公司制定规范的目的不是说你一定要怎样去使用编程语言&#xff0c;而是让大家遵守同一套规则&#xff0c;节省其他人阅读代码的成本&#xff0c;方便协作…

红酒按照糖含量怎么分类?

我们常听人们形容葡萄酒为干型或甜型&#xff0c;这指的是葡萄酒的含糖量。不含糖就是干型&#xff0c;含糖少就是半干型&#xff0c;含糖多就是甜型&#xff0c;这是葡萄酒分类的一种——按糖量分。云仓酒庄的品牌雷盛红酒分享一般分为干型、半干型、半甜型、甜型四种。 云仓…