MMU简介
MMU(内存管理单元)负责将软件使用的虚拟地址转换为内存系统中使用的物理地址。MMU包括两个模块:TLB(Translation Lookaside Buffer)和TWU(Table Walk Unit)。TLB缓存最近使用的转换(类似cache,将转换映射放入缓存,提高映射效率),而TWU从内存中读取转换表(查表,完成虚拟地址到物理地址的转换)。
转换表位于内存中,用于存储虚拟地址和物理地址之间的映射,另外还包括物理内存位置的属性。这些转换表是由内存管理单元MMU访问。
软件分配的所有内存地址都是虚拟的。这些内存地址被传递到 MMU,MMU 检查 TLB 中是否有最近使用的缓存转换。如果 MMU 没有找到最近缓存的转换,TWU会从内存中读取相应的表条目,如下所示:
转换(XLAT)表库
代码结构
转换表库有两个版本V1和V2,我们这里只关注V2的转换表库。
├── aarch64
│ ├── enable_mmu.S
│ └── xlat_tables_arch.c
├── ro_xlat_tables.mk
├── xlat_tables.mk
├── xlat_tables_context.c
├── xlat_tables_core.c
├── xlat_tables_private.h
└── xlat_tables_utils.c
- 核心模块:主要是
xlat_tables_core.c
文件,提供转换上下文初始化和内存映射等功能 - 上下文模块:主要是
xlat_tables_context.c
文件,提供添加映射区域等接口 - 工具模块:主要是
xlat_tables_utils.c
文件,提供转换表状态打印,内存属性查看等功能 - 架构模块:主要是
xlat_tables_arch.c
文件,提供TLB无效,创建MMU及计算物理地址空间大小等功能
映射区域
mmap regions
是对要内存映射区域的抽象。
/** Structure for specifying a single region of memory.*/
typedef struct mmap_region {unsigned long long base_pa;uintptr_t base_va;size_t size;unsigned int attr;/* Desired granularity. See the MAP_REGION2() macro for more details. */size_t granularity;
} mmap_region_t;
- base_pa:物理基地址
- base_va:虚拟基地址
- size:大小
- attr:属性
- granularity:映射粒度
为了不直接使用结构体struct mmap_region
,使用宏MAP_REGION
和MAP_REGION_PLAT
定义映射区域。
/** Default granularity size for an mmap_region_t.* Useful when no specific granularity is required.** By default, choose the biggest possible block size allowed by the* architectural state and granule size in order to minimize the number of page* tables required for the mapping.*/
#define REGION_DEFAULT_GRANULARITY XLAT_BLOCK_SIZE(MIN_LVL_BLOCK_DESC)/* Helper macro to define an mmap_region_t. */
#define MAP_REGION(_pa, _va, _sz, _attr) \MAP_REGION_FULL_SPEC(_pa, _va, _sz, _attr, REGION_DEFAULT_GRANULARITY)/* Helper macro to define an mmap_region_t with an identity mapping. */
#define MAP_REGION_FLAT(_adr, _sz, _attr) \MAP_REGION(_adr, _adr, _sz, _attr)
可以看出,最终展开到宏MAP_REGION_FULL_SPEC
,定义如下。
/** Helper macro to define an mmap_region_t. This macro allows to specify all* the fields of the structure but its parameter list is not guaranteed to* remain stable as we add members to mmap_region_t.*/
#define MAP_REGION_FULL_SPEC(_pa, _va, _sz, _attr, _gr) \{ \.base_pa = (_pa), \.base_va = (_va), \.size = (_sz), \.attr = (_attr), \.granularity = (_gr), \}
内存属性
内存属性包括内存类型、访问权限、执行权限以及缓存性与共享性等。
/** Memory mapping attributes*//** Memory types supported.* These are organised so that, going down the list, the memory types are* getting weaker; conversely going up the list the memory types are getting* stronger.*/
#define MT_DEVICE U(0)
#define MT_NON_CACHEABLE U(1)
#define MT_MEMORY U(2)
/* Values up to 7 are reserved to add new memory types in the future */#define MT_RO (U(0) << MT_PERM_SHIFT)
#define MT_RW (U(1) << MT_PERM_SHIFT)#define MT_SECURE (U(0) << MT_PAS_SHIFT)
#define MT_NS (U(1) << MT_PAS_SHIFT)
#define MT_ROOT (U(2) << MT_PAS_SHIFT)
#define MT_REALM (U(3) << MT_PAS_SHIFT)/** Access permissions for instruction execution are only relevant for normal* read-only memory, i.e. MT_MEMORY | MT_RO. They are ignored (and potentially* overridden) otherwise:* - Device memory is always marked as execute-never.* - Read-write normal memory is always marked as execute-never.*/
#define MT_EXECUTE (U(0) << MT_EXECUTE_SHIFT)
#define MT_EXECUTE_NEVER (U(1) << MT_EXECUTE_SHIFT)/** When mapping a region at EL0 or EL1, this attribute will be used to determine* if a User mapping (EL0) will be created or a Privileged mapping (EL1).*/
#define MT_USER (U(1) << MT_USER_SHIFT)
#define MT_PRIVILEGED (U(0) << MT_USER_SHIFT)/** Shareability defines the visibility of any cache changes to* all masters belonging to a shareable domain.** MT_SHAREABILITY_ISH: For inner shareable domain* MT_SHAREABILITY_OSH: For outer shareable domain* MT_SHAREABILITY_NSH: For non shareable domain*/
#define MT_SHAREABILITY_ISH (U(1) << MT_SHAREABILITY_SHIFT)
#define MT_SHAREABILITY_OSH (U(2) << MT_SHAREABILITY_SHIFT)
#define MT_SHAREABILITY_NSH (U(3) << MT_SHAREABILITY_SHIFT)/* Compound attributes for most common usages */
#define MT_CODE (MT_MEMORY | MT_RO | MT_EXECUTE)
#define MT_RO_DATA (MT_MEMORY | MT_RO | MT_EXECUTE_NEVER)
#define MT_RW_DATA (MT_MEMORY | MT_RW | MT_EXECUTE_NEVER)
- 内存类型:设备内存(MT_DEVICE),不带Cache普通内存(MT_NON_CACHEABLE),普通内存(MT_MEMORY)。
- 访问权限:只读(RO),读写(RW)。
- 物理地址空间安全属性:安全(MT_SECURE),非安全(MT_NS),ROOT(MT_ROOT),REALM(MT_REALM),后面两种是Armv9新增的RME。
- 指令执行权限:可执行(MT_EXECUTE),不可执行(MT_EXECUTE_NEVER)。执行权限仅对普通只读内存有效,即
MT_MEMORY | MT_RO
。设备内存和读写内存始终标记为不可执行,即忽略执行权限。 - EL0/EL1虚拟地址空间有两个区域布局:内核空间和应用空间,下面定义了转换表选择:用户空间映射(MT_USER),内核空间映射(MT_PRIVILEGED)。
- 对于属于一个共享域中的Master,定义了缓存共享性:内部共享(MT_SHAREABILITY_ISH),外部共享(MT_SHAREABILITY_OSH),没有共享性(MT_SHAREABILITY_NSH)。
- 最后结合上面定义了一些常用的属性:代码(MT_CODE),只读数据(MT_RO_DATA),读写数据(MT_RW_DATA)。
另外还定义了EL3下的内存类型,如果使能了RME,EL3的PAS(物理地址空间)属性是ROOT,否则是SECURE。
/* Memory type for EL3 regions. With RME, EL3 is in ROOT PAS */
#if ENABLE_RME
#define EL3_PAS MT_ROOT
#else
#define EL3_PAS MT_SECURE
#endif /* ENABLE_RME */
转换上下文
转换上下文存放了转换表的所有信息,结构体定义如下:
/* Struct that holds all information about the translation tables. */
struct xlat_ctx {/** Max allowed Virtual and Physical Addresses.*/unsigned long long pa_max_address;uintptr_t va_max_address;/** Array of all memory regions stored in order of ascending end address* and ascending size to simplify the code that allows overlapping* regions. The list is terminated by the first entry with size == 0.* The max size of the list is stored in `mmap_num`. `mmap` points to an* array of mmap_num + 1 elements, so that there is space for the final* null entry.*/struct mmap_region *mmap;int mmap_num;/** Array of finer-grain translation tables.* For example, if the initial lookup level is 1 then this array would* contain both level-2 and level-3 entries.*/uint64_t (*tables)[XLAT_TABLE_ENTRIES];int tables_num;
#if PLAT_RO_XLAT_TABLESbool readonly_tables;
#endif/** Keep track of how many regions are mapped in each table. The base* table can't be unmapped so it isn't needed to keep track of it.*/
#if PLAT_XLAT_TABLES_DYNAMICint *tables_mapped_regions;
#endif /* PLAT_XLAT_TABLES_DYNAMIC */int next_table;/** Base translation table. It doesn't need to have the same amount of* entries as the ones used for other levels.*/uint64_t *base_table;unsigned int base_table_entries;/** Max Physical and Virtual addresses currently in use by the* translation tables. These might get updated as we map/unmap memory* regions but they will never go beyond pa/va_max_address.*/unsigned long long max_pa;uintptr_t max_va;/* Level of the base translation table. */unsigned int base_level;/* Set to true when the translation tables are initialized. */bool initialized;/** Translation regime managed by this xlat_ctx_t. It should be one of* the EL*_REGIME defines.*/int xlat_regime;
};
- pa_max_address & va_max_address:允许的最大虚拟地址和物理地址。
- mmap & mmap_num:存放内存映射区域数组及数组大小,按结束地址和大小升序排列。
- tables & tables_num:多级转换表项,比如如果查询页表等级L1,该数组存放L2页表项和L3页表项。
- base_table & base_table_entries:转换表基地址和表项数量。
- max_pa & max_va:当前转换表中最大的物理地址和虚拟地址。
- base_level:基本转换表等级。
- initialized:转换表是否初始化。
- xlat_regime:转换机制,包括:EL1&EL0(EL1_EL0_REGIME),EL2(EL2_REGIME),EL3(EL3_REGIME),INVALID(EL_REGIME_INVALID),INVALID表示运行时决定。
对于启动阶段,创建分配了一个默认转换上下文,使用宏REGISTER_XLAT_CONTEXT
定义。
REGISTER_XLAT_CONTEXT(tf, MAX_MMAP_REGIONS, MAX_XLAT_TABLES,PLAT_VIRT_ADDR_SPACE_SIZE, PLAT_PHY_ADDR_SPACE_SIZE);#define REGISTER_XLAT_CONTEXT(_ctx_name, _mmap_count, _xlat_tables_count, \_virt_addr_space_size, _phy_addr_space_size) \REGISTER_XLAT_CONTEXT_FULL_SPEC(_ctx_name, (_mmap_count), \(_xlat_tables_count), \(_virt_addr_space_size), \(_phy_addr_space_size), \EL_REGIME_INVALID, \"xlat_table", "base_xlat_table")
该宏需要提供如下参数:
- _ctx_name:上下文名字
- _mmap_count:需要分配的最大映射区域数
- _xlat_tables_count:需要分配的次级页表数量
- _virt_addr_space_size:虚拟地址空间大小
- _phy_addr_space_size:物理地址空间大小
通用转换表API
每个API都有两种接口类型:用于BL启动镜像的当前转换上下文;用于给定的上下文,以_ctx
结尾。
初始化转换表
根据当前映射区域初始化转换表。在调用该API之后,只允许添加动态内存区域。
/** Initialize translation tables from the current list of mmap regions. Calling* this function marks the transition point after which static regions can no* longer be added.*/
void init_xlat_tables(void);
void init_xlat_tables_ctx(xlat_ctx_t *ctx);
init_xlat_tables
最终也是调用init_xlat_tables_ctx
函数,只是先获取当前的运行异常等级,配置使用哪个转换机制。
void __init init_xlat_tables(void)
{assert(tf_xlat_ctx.xlat_regime == EL_REGIME_INVALID);unsigned int current_el = xlat_arch_current_el();if (current_el == 1U) {tf_xlat_ctx.xlat_regime = EL1_EL0_REGIME;} else if (current_el == 2U) {tf_xlat_ctx.xlat_regime = EL2_REGIME;} else {assert(current_el == 3U);tf_xlat_ctx.xlat_regime = EL3_REGIME;}init_xlat_tables_ctx(&tf_xlat_ctx);
}
init_xlat_tables_ctx
主要功能是将映射区域添加到转换表中,定义如下,关键函数为xlat_tables_map_region
。
void __init init_xlat_tables_ctx(xlat_ctx_t *ctx)
{assert(ctx != NULL);assert(!ctx->initialized);assert((ctx->xlat_regime == EL3_REGIME) ||(ctx->xlat_regime == EL2_REGIME) ||(ctx->xlat_regime == EL1_EL0_REGIME));assert(!is_mmu_enabled_ctx(ctx));mmap_region_t *mm = ctx->mmap;assert(ctx->va_max_address >=(xlat_get_min_virt_addr_space_size() - 1U));assert(ctx->va_max_address <= (MAX_VIRT_ADDR_SPACE_SIZE - 1U));assert(IS_POWER_OF_TWO(ctx->va_max_address + 1U));xlat_mmap_print(mm);/* All tables must be zeroed before mapping any region. */for (unsigned int i = 0U; i < ctx->base_table_entries; i++)ctx->base_table[i] = INVALID_DESC;for (int j = 0; j < ctx->tables_num; j++) {
#if PLAT_XLAT_TABLES_DYNAMICctx->tables_mapped_regions[j] = 0;
#endiffor (unsigned int i = 0U; i < XLAT_TABLE_ENTRIES; i++)ctx->tables[j][i] = INVALID_DESC;}while (mm->size != 0U) {uintptr_t end_va = xlat_tables_map_region(ctx, mm, 0U,ctx->base_table, ctx->base_table_entries,ctx->base_level);
#if !(HW_ASSISTED_COHERENCY || WARMBOOT_ENABLE_DCACHE_EARLY)xlat_clean_dcache_range((uintptr_t)ctx->base_table,ctx->base_table_entries * sizeof(uint64_t));
#endifif (end_va != (mm->base_va + mm->size - 1U)) {ERROR("Not enough memory to map region:\n"" VA:0x%lx PA:0x%llx size:0x%zx attr:0x%x\n",mm->base_va, mm->base_pa, mm->size, mm->attr);panic();}mm++;}assert(ctx->pa_max_address <= xlat_arch_get_max_supported_pa());assert(ctx->max_va <= ctx->va_max_address);assert(ctx->max_pa <= ctx->pa_max_address);ctx->initialized = true;xlat_tables_print(ctx);
}
添加映射区域
上面两个API是根据PA和VA添加映射区域,下面两个是以数组形式进行添加映射区域。
/** Add a static region with defined base PA and base VA. This function can only* be used before initializing the translation tables. The region cannot be* removed afterwards.*/
void mmap_add_region(unsigned long long base_pa, uintptr_t base_va,size_t size, unsigned int attr);
void mmap_add_region_ctx(xlat_ctx_t *ctx, const mmap_region_t *mm);/** Add an array of static regions with defined base PA and base VA. This* function can only be used before initializing the translation tables. The* regions cannot be removed afterwards.*/
void mmap_add(const mmap_region_t *mm);
void mmap_add_ctx(xlat_ctx_t *ctx, const mmap_region_t *mm);
在启动阶段定义了一个默认的转换上下文:
/** Allocate and initialise the default translation context for the BL image* currently executing.*/
REGISTER_XLAT_CONTEXT(tf, MAX_MMAP_REGIONS, MAX_XLAT_TABLES,PLAT_VIRT_ADDR_SPACE_SIZE, PLAT_PHY_ADDR_SPACE_SIZE);
mmap_add_region
和mmap_add
都是添加到这个默认的转换上下文中。
void mmap_add_region(unsigned long long base_pa, uintptr_t base_va, size_t size,unsigned int attr)
{mmap_region_t mm = MAP_REGION(base_pa, base_va, size, attr);mmap_add_region_ctx(&tf_xlat_ctx, &mm);
}void mmap_add(const mmap_region_t *mm)
{mmap_add_ctx(&tf_xlat_ctx, mm);
}
上面最终都会调用mmap_add_region_ctx
函数,将定义的映射区域添加到转换上下文定义的数组中,其是就是整合到一个映射区域数组中,虚拟地址小和区域大小小的排在前面。
void mmap_add_region_ctx(xlat_ctx_t *ctx, const mmap_region_t *mm)
{mmap_region_t *mm_cursor = ctx->mmap, *mm_destination;const mmap_region_t *mm_end = ctx->mmap + ctx->mmap_num;const mmap_region_t *mm_last;unsigned long long end_pa = mm->base_pa + mm->size - 1U;uintptr_t end_va = mm->base_va + mm->size - 1U;int ret;/* Ignore empty regions */if (mm->size == 0U)return;/* Static regions must be added before initializing the xlat tables. */assert(!ctx->initialized);ret = mmap_add_region_check(ctx, mm);if (ret != 0) {ERROR("mmap_add_region_check() failed. error %d\n", ret);assert(false);return;}/** Find correct place in mmap to insert new region.** 1 - Lower region VA end first.* 2 - Smaller region size first.** VA 0 0xFF** 1st |------|* 2nd |------------|* 3rd |------|* 4th |---|* 5th |---|* 6th |----------|* 7th |-------------------------------------|** This is required for overlapping regions only. It simplifies adding* regions with the loop in xlat_tables_init_internal because the outer* ones won't overwrite block or page descriptors of regions added* previously.** Overlapping is only allowed for static regions.*/while (((mm_cursor->base_va + mm_cursor->size - 1U) < end_va)&& (mm_cursor->size != 0U)) {++mm_cursor;}while (((mm_cursor->base_va + mm_cursor->size - 1U) == end_va) &&(mm_cursor->size != 0U) && (mm_cursor->size < mm->size)) {++mm_cursor;}/** Find the last entry marker in the mmap*/mm_last = ctx->mmap;while ((mm_last->size != 0U) && (mm_last < mm_end)) {++mm_last;}/** Check if we have enough space in the memory mapping table.* This shouldn't happen as we have checked in mmap_add_region_check* that there is free space.*/assert(mm_last->size == 0U);/* Make room for new region by moving other regions up by one place */mm_destination = mm_cursor + 1;(void)memmove(mm_destination, mm_cursor,(uintptr_t)mm_last - (uintptr_t)mm_cursor);/** Check we haven't lost the empty sentinel from the end of the array.* This shouldn't happen as we have checked in mmap_add_region_check* that there is free space.*/assert(mm_end->size == 0U);*mm_cursor = *mm;if (end_pa > ctx->max_pa)ctx->max_pa = end_pa;if (end_va > ctx->max_va)ctx->max_va = end_va;
}
启用MMU
启用MMU有两个函数:setup_mmu_cfg
和enable_mmu_direct_el*
。定义了一个与MMU配置寄存器相对应的数组,每个元素都是64位:
/** MMU configuration register values for the active translation context. Used* from the MMU assembly helpers.*/
uint64_t mmu_cfg_params[MMU_CFG_PARAM_MAX];
setup_mmu_cfg
是将转换上下文中信息存储到上面的配置寄存器数组中。
void setup_mmu_cfg(uint64_t *params, unsigned int flags,const uint64_t *base_table, unsigned long long max_pa,uintptr_t max_va, int xlat_regime)
{uint64_t mair, ttbr0, tcr;uintptr_t virtual_addr_space_size;/* Set attributes in the right indices of the MAIR. */mair = MAIR_ATTR_SET(ATTR_DEVICE, ATTR_DEVICE_INDEX);mair |= MAIR_ATTR_SET(ATTR_IWBWA_OWBWA_NTR, ATTR_IWBWA_OWBWA_NTR_INDEX);mair |= MAIR_ATTR_SET(ATTR_NON_CACHEABLE, ATTR_NON_CACHEABLE_INDEX);/** Limit the input address ranges and memory region sizes translated* using TTBR0 to the given virtual address space size.*/assert(max_va < ((uint64_t)UINTPTR_MAX));virtual_addr_space_size = (uintptr_t)max_va + 1U;assert(virtual_addr_space_size >=xlat_get_min_virt_addr_space_size());assert(virtual_addr_space_size <= MAX_VIRT_ADDR_SPACE_SIZE);assert(IS_POWER_OF_TWO(virtual_addr_space_size));/** __builtin_ctzll(0) is undefined but here we are guaranteed that* virtual_addr_space_size is in the range [1,UINTPTR_MAX].*/int t0sz = 64 - __builtin_ctzll(virtual_addr_space_size);tcr = (uint64_t)t0sz << TCR_T0SZ_SHIFT;/** Set the cacheability and shareability attributes for memory* associated with translation table walks.*/if ((flags & XLAT_TABLE_NC) != 0U) {/* Inner & outer non-cacheable non-shareable. */tcr |= TCR_SH_NON_SHAREABLE |TCR_RGN_OUTER_NC | TCR_RGN_INNER_NC;} else {/* Inner & outer WBWA & shareable. */tcr |= TCR_SH_INNER_SHAREABLE |TCR_RGN_OUTER_WBA | TCR_RGN_INNER_WBA;}/** It is safer to restrict the max physical address accessible by the* hardware as much as possible.*/unsigned long long tcr_ps_bits = tcr_physical_addr_size_bits(max_pa);if (xlat_regime == EL1_EL0_REGIME) {/** TCR_EL1.EPD1: Disable translation table walk for addresses* that are translated using TTBR1_EL1.*/tcr |= TCR_EPD1_BIT | (tcr_ps_bits << TCR_EL1_IPS_SHIFT);} else if (xlat_regime == EL2_REGIME) {tcr |= TCR_EL2_RES1 | (tcr_ps_bits << TCR_EL2_PS_SHIFT);} else {assert(xlat_regime == EL3_REGIME);tcr |= TCR_EL3_RES1 | (tcr_ps_bits << TCR_EL3_PS_SHIFT);}/* Set TTBR bits as well */ttbr0 = (uint64_t) base_table;if (is_armv8_2_ttcnp_present()) {/* Enable CnP bit so as to share page tables with all PEs. */ttbr0 |= TTBR_CNP_BIT;}params[MMU_CFG_MAIR] = mair;params[MMU_CFG_TCR] = tcr;params[MMU_CFG_TTBR0] = ttbr0;
}
首先是设置内存属性到MAIR寄存器,这里配置设备内存属性ATTR_DEVICE
为Device_nGnRE,即
聚合、不重排和提前写应答;普通内存属性为两种:ATTR_NON_CACHEABLE
即普通内存、高速缓存的回写策略为直写策略、内部无高速缓存,ATTR_IWBWA_OWBWA_NTR
即普通内存、内外均直写策略。
接着设置TCR_ELx寄存器,TCR_ELx 寄存器中的 TnSZ 字段控制虚拟地址空间的大小,其值为64 - 虚地址空间大小;RGN字段控制共享性和缓存性;PS/IPS控制PA或者IPA空间大小。
最后配置TTBR寄存器,存放了页表的基地址,这里使用了低位虚拟地址空间TTBR0。
enable_mmu_direct_elx
是一段汇编实现,将上面的数组配置到相应的MMU寄存器中,然后使能MMU,以enable_mmu_direct_el3
为例,实现如下。
func enable_mmu_direct_\()el\el
#if ENABLE_ASSERTIONS_mrs x1, sctlr, \eltst x1, #SCTLR_M_BITASM_ASSERT(eq)
#endif/* Invalidate all TLB entries */tlbi_invalidate_all \elmov x7, x0adrp x0, mmu_cfg_paramsadd x0, x0, :lo12:mmu_cfg_params/* MAIR */ldr x1, [x0, #(MMU_CFG_MAIR << 3)]_msr mair, \el, x1/* TCR */ldr x2, [x0, #(MMU_CFG_TCR << 3)]_msr tcr, \el, x2/* TTBR */ldr x3, [x0, #(MMU_CFG_TTBR0 << 3)]_msr ttbr0, \el, x3/** Ensure all translation table writes have drained into memory, the TLB* invalidation is complete, and translation register writes are* committed before enabling the MMU*/dsb ishisb/* Set and clear required fields of SCTLR */_mrs x4, sctlr, \elmov_imm x5, SCTLR_WXN_BIT | SCTLR_C_BIT | SCTLR_M_BITorr x4, x4, x5/* Additionally, amend SCTLR fields based on flags */bic x5, x4, #SCTLR_C_BITtst x7, #DISABLE_DCACHEcsel x4, x5, x4, ne_msr sctlr, \el, x4isbretendfunc enable_mmu_direct_\()el\el
示例
以ARM FVP平台BL1阶段为例,并假设不支持RME。在arm_bl1_plat_arch_setup
函数中会创建MMU页表,并启用MMU。
void arm_bl1_plat_arch_setup(void)
{...const mmap_region_t bl_regions[] = {MAP_BL1_TOTAL,MAP_BL1_RO,{0}};setup_page_tables(bl_regions, plat_arm_get_mmap());enable_mmu_el3(0);...
}
内存映射区域
页表创建包括两种类型:通用内存区域和特定平台内存区域。
通用内存区域
MAP_BL1_TOTAL
定义了BL1可见的所有可信RAM空间,属性为:普通内存,可读性,安全。其宏展开如下:
#define MAP_BL1_TOTAL MAP_REGION_FLAT( \bl1_tzram_layout.total_base, \bl1_tzram_layout.total_size, \MT_MEMORY | MT_RW | EL3_PAS)
而MAP_BL1_RO
定义了BL1的代码段内存,属性为:代码(普通内存,只读,可执行),安全。
#define MAP_BL1_RO MAP_REGION_FLAT( \BL_CODE_BASE, \BL1_CODE_END - BL_CODE_BASE, \MT_CODE | EL3_PAS)
特定平台内存区域
对于不同的平台,也需要创建平台相关的页表(主要是外设),并映射内存区域。FVP平台BL1阶段的plat_arm_get_mmap()
定义为:
/** Table of memory regions for various BL stages to map using the MMU.* This doesn't include Trusted SRAM as setup_page_tables() already takes care* of mapping it.*/
#ifdef IMAGE_BL1
const mmap_region_t plat_arm_mmap[] = {ARM_MAP_SHARED_RAM,V2M_MAP_FLASH0_RO,V2M_MAP_IOFPGA,MAP_DEVICE0,
#if FVP_INTERCONNECT_DRIVER == FVP_CCNMAP_DEVICE1,
#endif
#if TRUSTED_BOARD_BOOT/* To access the Root of Trust Public Key registers. */MAP_DEVICE2,/* Map DRAM to authenticate NS_BL2U image. */ARM_MAP_NS_DRAM1,
#endif{0}
};
#endif
对于ARM_MAP_SHARED_RAM
定义了共享内存区域,属性为:设备内存,读写,安全。其展开如下:
#define ARM_MAP_SHARED_RAM MAP_REGION_FLAT( \ARM_SHARED_RAM_BASE, \ARM_SHARED_RAM_SIZE, \MT_DEVICE | MT_RW | EL3_PAS)
如果使能安全启动,MAP_DEVICE2
定义了访问设备根公钥寄存器内存区域,属性为:设备内存,读写,安全。其展开如下:
#define MAP_DEVICE2 MAP_REGION_FLAT(DEVICE2_BASE, \DEVICE2_SIZE, \MT_DEVICE | MT_RW | MT_SECURE)
页表创建
setup_page_tables
函数用于创建页表,定义如下:
/** Set up the page tables for the generic and platform-specific memory regions.* The size of the Trusted SRAM seen by the BL image must be specified as well* as an array specifying the generic memory regions which can be;* - Code section;* - Read-only data section;* - Init code section, if applicable* - Coherent memory region, if applicable.*/void __init setup_page_tables(const mmap_region_t *bl_regions,const mmap_region_t *plat_regions)
{/** Map the Trusted SRAM with appropriate memory attributes.* Subsequent mappings will adjust the attributes for specific regions.*/mmap_add(bl_regions);/* Now (re-)map the platform-specific memory regions */mmap_add(plat_regions);/* Create the page tables to reflect the above mappings */init_xlat_tables();
}
分别将BL区域和平台自定义区域添加到转换表中,然后创建页表,添加映射关系。
启用MMU
由于BL1处于EL3等级,调用enable_mmu_el3
函数,使能MMU。
void enable_mmu_el3(unsigned int flags)
{setup_mmu_cfg((uint64_t *)&mmu_cfg_params, flags,tf_xlat_ctx.base_table, MAX_PHYS_ADDR,tf_xlat_ctx.va_max_address, EL3_REGIME);enable_mmu_direct_el3(flags);
}
参考
- 万字长文带你搞定MMU&TLB&TWU