C++:内存管理

内存分布:

首先我们需要了解的是C/C++中内存区域的划分:

1. 栈又叫堆栈--非静态局部变量/函数参数/返回值等等,栈是向下增长的:先调用的地址比后调用的地址大。
2. 内存映射段是高效的I/O映射方式,用于装载一个共享的动态内存库。用户可使用系统接口
创建共享共享内存,做进程间通信。
3. 堆用于程序运行时动态内存分配,堆是可以上增长的:先调用的地址比后调用的地址小。
4. 数据段--存储全局数据和静态数据。
5. 代码段--可执行的代码/只读常量。

当我们懂了内存分布,可以尝试练习:

是不是前面还算简单,下面就写懵圈了!

解析:

        char2是定义在栈上的,它将在常量区的“abcd”拷贝的一份到数组中,,所以解引用(数组名是数组的首地址)还是是在栈上;

        pChar3是一个指向常量区的“abcd”的一个指针,定义在栈上,解引用后就是常量区的“abcd”所以解引用在常量区;

        ptr1定义在栈上,但是malloc开辟的空间在堆上,所以解引用是在堆上;

栈和堆的区别: 

栈和堆的区别:

        栈:由编译器自动分配并且出了作用域就释放,一般存储函数的参数局部变量等。
        堆:由我们通过开辟的空间分配,需要我们手动释放,若程不释放则系统释放。

1、申请内存的方式:
栈:由编译器自动分配,如变量的声明的同时会开辟空间。

堆:由程序员申请,需要制定需要的大小(动态分配)。
2、系统响应的不同:

栈:只要系统剩余空间大于申请内存,系统就会提供,否则程序会崩溃流:栈溢出。

堆:遍历空闲地址链表,找到符合要求的,就将该地址分配给程序,内存的首地址记录分配的大小(方便delete)。

3、空间大小不同:
栈:连续的,编译时就确定的大小;
堆:不连续,他的上限决定于系统中有效的虚拟内存。
4、执行效率的不同:
栈:由系统分配,速度快;
堆:程序员分配,速度慢,容易产生内存碎片,需要多少开辟多少。

C语言中动态内存管理方式:malloc/calloc/realloc/free

malloc/calloc/realloc的区别:

        1.malloc和realloc分配好内存空间后不会对空间初始化,calloc会对空间全部初始化为0.

        2.参数不同:malloc(需要开辟的大小)、calloc(需要开辟个数,每个的大小)、realloc(原来的指针,新的内存块大小)。

        3.它们空间分配失败的返回值地址都为NULL;

        4.它们都需要free释放内存,否则会造成内存泄漏等问题。

C++内存管理方式

        C语言内存管理方式在C++中可以继续使用,但有些地方就无能为力,而且使用起来比较麻烦,因此C++又提出了自己的内存管理方式:通过new和delete操作符进行动态内存管理。

new/delete操作内置类型

注意:在申请自定义类型的空间时,new会调用构造函数,delete会调用析构函数,而malloc与free不会。

#include <iostream>
using namespace std;class Stack
{
public:Stack(int capacity = 4){cout << "构造函数" << endl;_capacity = capacity;_a = new int[_capacity];_top = 0;}~Stack(){cout << "析构函数" << endl;delete[] _a;_a = nullptr;_top = 0;_capacity = 0;}
private:int* _a;int _capacity;int _top;
};int main()
{Stack s1;//Stack* p1 = new Stack;//1.new先开辟一个Stack大小的空间;2.然后调用构造函数在开辟一个栈的空间//delete p1;//1.先释放构造函数开辟的空间;2.再释放new开辟的Stack的空间//Stack* p2 = (Stack*)operator new(sizeof(Stack));//没有去调用构造函数初始化//operator delete(p2);//没有去调用析构函数,导致内存泄漏:给栈开辟的空间没有释放//Stack* p3 = new Stack[10];//这里开辟的空间会多开4个,用于存放开辟的数量,便于delete使用delete[] p3;//delete p3;//空间不能局部释放:直接去释放Stack的空间,前面还有用于记录数量的空间,所以程序崩溃return 0;
}

操作自定义类型:

 new/delete 和 malloc/free最大区别是 new/delete对于【自定义类型】除了开空间还会调用构造函数和析构函数!!!

class A
{
public:A(int a = 0): _a(a){cout << "A():" << this << endl;}//~A()//{//	cout << "~A():" << this << endl;//}private:int _a;
};int main()
{A* p4 = new A[10];//delete p4;//如果没有定义析构是不会出错:因为编译器的优化认为不需要调用析构,所以没有多开辟空间来记录开辟的个数free(p4);//同理return 0;
}
//通过上面两个程序的比较:new/delete  new[]/delete[] malloc/free 一定要配对使用,否则结果是未定义

注意:

        申请和释放单个元素的空间,使用new和delete操作符,申请和释放连续的空间,使用
new[]和delete[],注意:new和delete匹配起来使用。

了解operator new与operator delete函数

        new和delete是用户进行动态内存申请和释放的操作符,operator new 和operator delete是系统提供的全局函数new在底层调用operator new全局函数来申请空间,delete在底层通过operator delete全局函数来释放空间。

void* __CRTDECL operator new(size_t size) _THROW1(_STD bad_alloc)
{
    // try to allocate size bytes
    void* p;
    while ((p = malloc(size)) == 0)
        if (_callnewh(size) == 0)
        {
            // report no memory
            // 如果申请内存失败了,这里会抛出bad_alloc 类型异常
            static const std::bad_alloc nomem;
            _RAISE(nomem);
        }
    return (p);
}

可以看到operator new 函数实际还是通过malloc来申请空间,当malloc申请空间成功时直接返回;申请空间失败,尝试执行空间不足应对措施,如果改应对措施用户设置了,则继续申请,否则抛异常。可以理解为:为了解决C语言中将malloc失败的NULL设置为0,导致一些特殊场景的错误,所以将malloc进行封装了,对malloc失败进行异常抛出。

void operator delete(void* pUserData)
{
    _CrtMemBlockHeader* pHead;
    RTCCALLBACK(_RTC_Free_hook, (pUserData, 0));
    if (pUserData == NULL)
        return;
    _mlock(_HEAP_LOCK); /* block other threads */
    __TRY
        /* get a pointer to memory block header */
        pHead = pHdr(pUserData);
    /* verify block type */
    _ASSERTE(_BLOCK_TYPE_IS_VALID(pHead->nBlockUse));
    _free_dbg(pUserData, pHead->nBlockUse);
    __FINALLY
        _munlock(_HEAP_LOCK); /* release other threads */
    __END_TRY_FINALLY
        return;
}

operator delete函数本质还是通过free来释放空间,

        通过上述两个全局函数的实现知道,operator new 实际也是通过malloc来申请空间,如果malloc申请空间成功就直接返回,否则执行用户提供的空间不足应对措施,如果用户提供该措施就继续申请,否则就抛异常。operator delete 最终是通过free来释放空间的。

new和delete的实现原理

内置类型:

        如果申请的是内置类型的空间,new和malloc,delete和free基本类似,不同的地方是:
new/delete申请和释放的是单个元素的空间,new[]和delete[]申请的是连续空间,而且new在申请空间失败时会抛异常,malloc会返回NULL。

自定义类型:

new的原理:
        1. 调用operator new函数申请空间
        2. 在申请的空间上执行构造函数,完成对象的构造
delete的原理:
        1. 在空间上执行析构函数,完成对象中资源的清理工作
        2. 调用operator delete函数释放对象的空间
new T[N]的原理:
        1. 调用operator new[]函数,在operator new[]中实际调用operator new函数完成N个对象空间的申请:
        2. 在申请的空间上执行N次构造函数
delete[]的原理:
        1. 在释放的对象空间上执行N次析构函数,完成N个对象中资源的清理
        2. 调用operator delete[]释放空间,实际在operator delete[]中调用operator delete来释放空间

定位new表达式(placement-new)

定位new表达式是在已分配的原始内存空间中调用构造函数初始化一个对象。
使用格式:
        new (place_address) type或者new (place_address) type(initializer-list)
        place_address必须是一个指针,initializer-list是类型的初始化列表

使用场景:
        定位new表达式在实际中一般是配合内存池使用。因为内存池分配出的内存没有初始化,所以如果是自定义类型的对象,需要使用new的定义表达式进行显示调构造函数进行初始化

class A
{
public:A(int a = 0): _a(a){cout << "A():" << this << endl;}//~A()//{//	cout << "~A():" << this << endl;//}private:int _a;
};int main()
{A a1;//自动调用构造函数//构造函数可以显示调用吗?A* p1 = (A*)operator new(sizeof(A));//不能下面这样显示调用构造函数//p1->A(1);//但是可以用定位new显示调用构造函数new(p1)A(1);//析构函数就可以显示调用p1->~A();operator delete(p1);return 0;
}

特别需要理解:malloc/free和new/delete的区别

malloc/free和new/delete:

共同点是都是从堆上申请空间,并且需要用户手动释放。

不同的地方是
        1. malloc和free是函数,new和delete是操作符;
        2. malloc申请的空间不会初始化,new可以初始化;
        3. malloc申请空间时,需要手动计算空间大小并传递,new只需在其后跟上空间的类型即可,如果是多个对象,[]中指定对象个数即可;
        4. malloc的返回值为void*, 在使用时必须强转,new不需要,因为new后跟的是空间的类型;
        5. malloc申请空间失败时,返回的是NULL,因此使用时必须判空,new不需要,但是new需要捕获异常;
        6. 申请自定义类型对象时,malloc/free只会开辟空间,不会调用构造函数与析构函数,而new在申请空间后会调用构造函数完成对象的初始化,delete在释放空间前会调用析构函数完成空间中资源的清理.

本人实力有限可能对一些地方解释和理解的不够清晰,可以自己尝试读代码,或者评论区指出错误,望海涵!

感谢大佬们的一键三连! 感谢大佬们的一键三连! 感谢大佬们的一键三连!

                                              

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/166590.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

百度文心一言(千帆大模型)聊天API使用指导

开篇不得不吐槽下百度&#xff0c;百度智能云平台首页跳转千帆大模型平台的按钮太多了&#xff0c;不同按钮跳转不同的子页面&#xff0c;不熟悉的&#xff0c;能把人找懵。入口太多&#xff0c;就导致用户不知道从何开始。本文就从一个前端开发人员的角度&#xff0c;教大家快…

【深度学习】基于深度学习的超分辨率图像技术一览

超分辨率(Super-Resolution)即通过硬件或软件的方法提高原有图像的分辨率&#xff0c;图像超分辨率是计算机视觉和图像处理领域一个非常重要的研究问题&#xff0c;在医疗图像分析、生物特征识别、视频监控与安全等实际场景中有着广泛的应用。 SR取得了显著进步。一般可以将现有…

为什么,word文件在只读模式下,仍然能编辑?

Word文档设置了只读模式&#xff0c;是可以编辑的&#xff0c;但是当我们进行保存的时候就会发现&#xff0c;word提示需要重命名并选择新路径才能够保存。 这种操作&#xff0c;即使可以编辑文字&#xff0c;但是原文件是不会受到影响的&#xff0c;编辑之后的word文件会保存到…

20231124给RK3399的挖掘机开发板在Andorid10下加鼠标右键返回

20231124给RK3399的挖掘机开发板在Andorid10下加鼠标右键返回 2023/11/24 12:19 百度&#xff1a;RK3399 Android10 右键返回 https://blog.csdn.net/danhu/article/details/122467256 android9/android10 鼠标右键返回(已验证) danhu 于 2022-01-13 09:46:42 发布 android10 …

Echarts 大屏注册自定义地图解析文件流报错问题解决

效果图: 1、首先通过后台接口获取到SVG图片的文件流,postman能够正确解析出文件流,前端调用api时需要设置返回的响应格式为image/svg+xml格式,否则解析失败 拿到文件流后是这样的 <?xml version="1.0" encoding="utf-8"?> <!-- Generator: …

AI制作的《大多数普通女孩的一生》——公开教程和工作流

内容来源&#xff1a;JiamigouCn ​这周由AI制作的《大多数普通女孩的一生》&#xff0c;在抖音爆火&#xff0c;获得新华网转发。到目前为止&#xff0c;全网还没有公开教程和工作流&#xff0c;需要花费800-2000购买。 本着AI社区共享原则&#xff0c;我委托公众号“楚思智能…

小学生古诗文大会复赛在线模拟新增刷题版和闯关版,帮助孩子冲刺

小学生古诗文大会明天就要开始了&#xff0c;刚刚古诗文大会主办方也正式发布了通知&#xff0c;总体安排、操作指引和我之前发布的一样&#xff1a;2023年11月25日小学生古诗文大会复选&#xff08;复赛&#xff09;答题操作手册 为了帮助参加复选&#xff08;复赛&#xff09…

NFC技术简介

NFC简介 NFC(近场通信&#xff0c;Near Field Communication&#xff09;是一种短距高频的无线电技术&#xff0c;由非接触式射频识别(RFID)演变而来。 NFC工作频率为13.56Hz&#xff0c;通常只有在距离不超过4厘米时才能启动连接&#xff0c;其传输速度有106 Kbit/秒、212 Kb…

从文本生成到数据增强:探索 AI 前沿的开源套件 | 开源专题 No.44

Significant-Gravitas/AutoGPT Stars: 150.4k License: MIT AutoGPT 是开源 AI 代理生态系统的核心工具包。它采用模块化和可扩展的框架&#xff0c;使您能够专注于以下方面&#xff1a; 构建 - 为惊人之作打下基础。测试 - 将您的代理调整到完美状态。查看 - 观察进展成果呈…

HandBrake 1.7 近日发布

导读HandBrake 1.7 近日发布&#xff0c;作为这个开源、免费和跨平台视频转码器应用程序的重大更新&#xff0c;适用于 GNU/Linux、macOS 和 Windows 系统。 在 HandBrake 1.6 发布近一年后&#xff0c;HandBrake 1.7 版本为 Linux 用户提供了许多好处&#xff0c;包括视频摘要…

ubuntu22.04 arrch64版在线安装maven

脚本 if type -p mvn; thenecho "maven has been installed."elsecd /home/zenglgwget https://dlcdn.apache.org/maven/maven-3/3.9.5/binaries/apache-maven-3.9.5-bin.tar.gz --no-check-certificatetar vxf apache-maven-3.9.5-bin.tar.gz rm -rf /usr/local/mav…

springboot+vue基本微信小程序的剧本杀游戏设计与实现

项目介绍 首先,论文一开始便是清楚的论述了小程序的研究内容。其次,剖析系统需求分析,弄明白“做什么”,分析包括业务分析和业务流程的分析以及用例分析,更进一步明确系统的需求。然后在明白了小程序的需求基础上需要进一步地设计系统,主要包罗软件架构模式、整体功能模块、数…

通过内网穿透本地MariaDB数据库,实现在公网环境下使用navicat图形化工具

公网远程连接MariaDB数据库【cpolar内网穿透】 文章目录 公网远程连接MariaDB数据库【cpolar内网穿透】1. 配置MariaDB数据库1.1 安装MariaDB数据库1.2 测试局域网内远程连接 2. 内网穿透2.1 创建隧道映射2.2 测试随机地址公网远程访问3. 配置固定TCP端口地址3.1 保留一个固定的…

小程序:project.config.json / project.private.config.json / 项目配置文件 /拉取代码产生冲突 / 如何解决

一、理解project.config.json / project.private.config.json project.config.json 文件是项目的配置文件&#xff0c;它包含了关于小程序的一些基本信息&#xff0c;例如小程序的名称、App ID、开发者信息以及页面路径等。这个文件一般不会被提交到版本控制系统中&#xff0c;…

微信小程序使用腾讯地图实现地点搜索并且随着地图的滑动加载滑动到区域的地点,本文地点使用医院关键词作为搜索地点

实现效果如下 1.页面加载时&#xff0c;根据getLocation方法获取用户当前经纬度获取20条医院位置信息 2.页面滑动时&#xff0c;根据滑动到的经纬度再次获取20条医院位置信息 获取到的医院位置信息 实现方法如下 1.在.wxml中添加触发滑动的方法bindregiοnchange“onMapRegio…

【Spring集成MyBatis】核心配置文件

文章目录 1. typeHandlers标签2. plugins标签通过PageHelper的API获取分页的信息 1. typeHandlers标签 可以重写类型处理器&#xff0c;或创建类型处理器来处理不支持/非标准的类型。选择性地将它映射到一个JDBC类型&#xff1a;如Java中的Date类型&#xff0c;将其存放到数据…

docker安装以及idea访问docker

其他目录&#xff1a; docker 安装环境&#xff08;有空更新&#xff09; url “” docker 打包java包&#xff0c;并运行&#xff08;有空更新&#xff09; url “” docker 打包vue &#xff08;有空更新&#xff09; url “” docker 多服务 &#xff08;有空更新&#xff…

2023年亚太杯数学建模A题水果采摘机器人的图像识别功能(matlab 部分代码)

对于1-4问针对的是附录1 中的数据 clc; close all; clear; % 图像文件夹路径 folder_path E:/新建文件夹/yatai/Attachment/Attachment 1/; % 图像文件列表 image_files dir(fullfile(folder_path, *.jpg)); % 假设所有图片都是jpg格式% 解析文件名中的数字&#xff0c;并转…

机器学习探索计划——数据集划分

文章目录 导包手写数据划分函数使用sklearn内置的划分数据函数stratifyy理解举例 导包 import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import make_blobs手写数据划分函数 x, y make_blobs(n_samples 300,n_features 2,centers 3,clus…

Java设计模式系列:单例设计模式

Java设计模式系列&#xff1a;单例设计模式 介绍 所谓类的单例设计模式&#xff0c;就是采取一定的方法保证在整个的软件系统中&#xff0c;对某个类只能存在一个对象实例&#xff0c;并且该类只提供一个取得其对象实例的方法&#xff08;静态方法&#xff09; 比如 Hiberna…