Java设计模式系列:单例设计模式

Java设计模式系列:单例设计模式

介绍

所谓类的单例设计模式,就是采取一定的方法保证在整个的软件系统中,对某个类只能存在一个对象实例,并且该类只提供一个取得其对象实例的方法(静态方法)

比如 Hibernate 的 SessionFactory,它充当数据存储源的代理,并负责创建 Session 对象。SessionFactory 并不是轻量级的,一般情况下,一个项目通常只需要一个 SessionFactory 就够,这是就会使用到单例模式

八种方式

  • 1)饿汉式(静态常量)

  • 2)饿汉式(静态代码块)

  • 3)懒汉式(线程不安全)

  • 4)懒汉式(线程安全,同步方法)

  • 5)懒汉式(线程不安全,同步代码块)

  • 6)双重检查

  • 7)静态内部类

  • 8)枚举

1、饿汉式(静态常量)

  • 1)构造器私有化(防止外部 new)

  • 2)类的内部创建对象

  • 3)向外暴露一个静态的公共方法 getInstance

package com.mcode.api.singleton.type1;/*** ClassName: SingletonTest01* Package: com.mcode.api.singleton.type1* Description:** @Author: robin* @Create: 2019/11/22 - 9:41 PM* @Version: v1.0*/
public class SingletonTest01 {public static void main(String[] args) {Singleton instance = Singleton.getInstance();Singleton instance1 = Singleton.getInstance();System.out.println(instance == instance1); //trueSystem.out.println("instance.hashCode=" + instance.hashCode());System.out.println("instance.hashCode=" + instance1.hashCode());}
}//饿汉式(静态变量)
class Singleton {// 1、构造器私有化private Singleton() {}// 2、类的内部创建对象private static final Singleton instance = new Singleton();// 3、向外暴露一个静态的公共方法public static Singleton getInstance() {return instance;}
}

优缺点

  • 1)优点:这种写法比较简单,就是在类装载的时候就完成实例化。避免了线程同步问题

  • 2)缺点:在类装载的时候就完成实例化,没有达到 Lazy Loading 的效果。如果从始至终从未使用过这个实例,则会造成内存的浪费

  • 3)这种方式基于 classloder 机制避免了多线程的同步问题。不过,instance 在类装载时就实例化,在单例模式中大多数都是调用getlnstance 方法,但是导致类装载的原因有很多种,因此不能确定有其他的方式(或者其他的静态方法)导致类装载,这时候初始化 instance 就没有达到 Lazy loading 的效果

  • 4)结论:这种单例模式可用,可能造成内存浪费

2、饿汉式(静态代码块)

  • 1)构造器私有化

  • 2)类的内部声明对象

  • 3)在静态代码块中创建对象

  • 4)向外暴露一个静态的公共方法

public class Singleton {// 1、构造器私有化private Singleton() {}// 2、类的内部声明对象private static Singleton instance;// 3、在静态代码块中创建对象static {instance = new Singleton();}// 4、向外暴露一个静态的公共方法public static Singleton getInstance() {return instance;}
}

优缺点

  • 1)这种方式和上面的方式其实类似,只不过将类实例化的过程放在了静态代码块中,也是在类装载的时候,就执行静态代码块中的代码,初始化类的实例。优缺点和上面是一样的。

  • 2)结论:这种单例模式可用,但是可能造成内存浪费

3、懒汉式(线程不安全)

  • 1)构造器私有化

  • 2)类的内部创建对象

  • 3)向外暴露一个静态的公共方法,当使用到该方法时,才去创建 instance

// 1、构造器私有化
private Singleton() {
}// 2、类的内部声明对象
private static Singleton instance;// 3、向外暴露一个静态的公共方法,当使用到该方法时,才去创建 instance
public static Singleton getInstance() {if (instance == null) {instance = new Singleton();}return instance;
}

优缺点

  • 1)起到了 Lazy Loading 的效果,但是只能在单线程下使用

  • 2)如果在多线程下,一个线程进入了判断语句块,还未来得及往下执行,另一个线程也通过了这个判断语句,这时便会产生多个实例

  • 3)结论:在实际开发中,不要使用这种方式

4、懒汉式(线程安全,同步方法)

  • 1)构造器私有化

  • 2)类的内部创建对象

  • 3)向外暴露一个静态的公共方法,加入同步处理的代码,解决线程安全问题

public class Singleton {// 1、构造器私有化private Singleton() {}// 2、类的内部声明对象private static Singleton instance;// 3、向外暴露一个静态的公共方法,加入同步处理的代码,解决线程安全问题public static synchronized Singleton getInstance() {if (instance == null) {instance = new Singleton();}return instance;}
}

优缺点

  • 1)解决了线程不安全问题

  • 2)效率太低了,每个线程在想获得类的实例时候,执行getlnstance()方法都要进行同步。而其实这个方法只执行一次实例化代码就够了,后面的想获得该类实例,直接return就行了。方法进行同步效率太低

  • 3)结论:在实际开发中,不推荐使用这种方式

5、懒汉式(线程不安全,同步代码块)

  • 1)构造器私有化

  • 2)类的内部创建对象

  • 3)向外暴露一个静态的公共方法,加入同步处理的代码块

public class Singleton {// 1、构造器私有化private Singleton() {}// 2、类的内部声明对象private static Singleton instance;// 3、向外暴露一个静态的公共方法,加入同步处理的代码,解决线程安全问题public static Singleton getInstance() {if (instance == null) {synchronized (Singleton.class) {instance = new Singleton();}}return instance;}
}

优缺点

  • 1)这种方式,本意是想对第四种实现方式的改进,因为前面同步方法效率太低,改为同步产生实例化的的代码块

  • 2)但是这种同步并不能起到线程同步的作用。跟第3种实现方式遇到的情形一致,假如一个线程进入了判断语句块,还未来得及往下执行,另一个线程也通过了这个判断语句,这时便会产生多个实例

  • 3)结论:在实际开发中,不能使用这种方式

6、双重检查

  • 1)构造器私有化

  • 2)类的内部创建对象,同时用volatile关键字修饰修饰

  • 3)向外暴露一个静态的公共方法,加入同步处理的代码块,并进行双重判断,解决线程安全问题

public class Singleton {// 1、构造器私有化private Singleton() {}// 2、类的内部声明对象,同时用`volatile`关键字修饰修饰private static volatile Singleton instance;// 3、向外暴露一个静态的公共方法,加入同步处理的代码块,并进行双重判断,解决线程安全问题public static Singleton getInstance() {if (instance == null) {synchronized (Singleton.class) {if (instance == null) {instance = new Singleton();}}}return instance;}
}

优缺点

  • 1)Double-Check 概念是多线程开发中常使用到的,我们进行了两次检查,这样就可以保证线程安全了

  • 2)这样实例化代码只用执行一次,后面再次访问时直接 return 实例化对象,也避免的反复进行方法同步

  • 3)线程安全;延迟加载;效率较高

  • 4)结论:在实际开发中,推荐使用这种单例设计模式

7、静态内部类

  • 1)构造器私有化

  • 2)定义一个静态内部类,内部定义当前类的静态属性

  • 3)向外暴露一个静态的公共方法

public class Singleton {// 1、构造器私有化private Singleton() {}// 2、定义一个静态内部类,内部定义当前类的静态属性private static class SingletonInstance {private static final Singleton instance = new Singleton();}// 3、向外暴露一个静态的公共方法public static Singleton getInstance() {return SingletonInstance.instance;}
}

优缺点

  • 1)这种方式采用了类装载的机制,来保证初始化实例时只有一个线程

  • 2)静态内部类方式在 Singleton 类被装载时并不会立即实例化,而是在需要实例化时,调用getlnstance方法,才会装载Singletonlnstance 类,从而完成 Singleton 的实例化

  • 3)类的静态属性只会在第一次加载类的时候初始化,JVM帮助我们保证了线程的安全性,在类进行初始化时,别的线程是无法进入的

  • 4)优点:避免了线程不安全,利用静态内部类特点实现延迟加载,效率高

  • 5)结论:推荐使用

8、枚举

public enum Singleton {INSTANCE;public void sayHello() {System.out.println("Hello World");}
}

优缺点

  • 1)这借助 JDK1.5 中添加的枚举来实现单例模式。不仅能避免多线程同步问题,而且还能防止反序列化重新创建新的对象

  • 2)这种方式是 Effective Java 作者 Josh Bloch 提倡的方式

  • 3)结论:推荐使用

JDK 源码分析

JDK中 java.lang.Runtime 就是经典的单例模式

注意事项和细节说明

  • 1)单例模式保证了系统内存中该类只存在一个对象,节省了系统资源,对于一些需要频繁创建销毁的对象,使用单例模式可以提高系统性能

  • 2)当想实例化一个单例类的时候,必须要记住使用相应的获取对象的方法,而不是使用 new

  • 3)单例模式使用的场景:需要频繁的进行创建和销毁的对象、创建对象时耗时过多或耗费资源过多但又经常用到的对象(即:重量级对象)、工具类对象、频繁访问数据库或文件的对象(比如数据源、session 工厂等)

虽然上述提到的概念中,将双重检查、静态内部类、枚举三种方式的单例模式单独列举出来说明,但个人觉得本质也可以归类到饿汉式和懒汉式中;另外,同步代码块虽然上述中归类到线程安全,实际上并不是线程安全的

总结如下

  • |——饿汉式:静态常量、静态代码块、枚举(本质就是静态常量)

  • |——懒汉式

    • |——线程不安全:一次检查、同步代码块
    • |——线程安全:同步方法、双重检查、静态内部类

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/166561.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

leetcode:495. 提莫攻击

一、题目 链接&#xff1a;495. 提莫攻击 - 力扣&#xff08;LeetCode&#xff09; 函数原型&#xff1a;int findPoisonedDuration(int* timeSeries, int timeSeriesSize, int duration) 二、思路 遍历数组timeSeries&#xff0c;如果 元素值duration < 下一元素值 &#x…

OpenCV快速入门:图像分析——傅里叶变换、积分图像

文章目录 前言一、傅里叶变换1.1 离散傅里叶变换1.1.1 离散傅里叶变换原理1.1.2 离散傅里叶变换公式1.1.3 代码实现1.1.4 cv2.dft 函数解析 1.2 傅里叶变换进行卷积1.2.1 傅里叶变换卷积原理1.2.2 傅里叶变换卷积公式1.2.3 代码实现1.2.4 cv2.mulSpectrums 函数解析 1.3 离散余…

基于深度学习的文本分类

通过构建更复杂的深度学习模型可以提高分类的准确性&#xff0c;即分别基于TextCNN、TextRNN和TextRCNN三种算法实现中文文本分类。 项目地址&#xff1a;zz-zik/NLP-Application-and-Practice: 本项目将《自然语言处理与应用实战》原书中代码进行了实现&#xff0c;并在此基础…

Unity使用DOTween实现分段进度条

文章目录 需求下载安装 DOTween实现实现效果 需求 用组件进度条&#xff08;Slider&#xff09;&#xff0c;利用分段加载进行以假乱真的进度效果&#xff0c;比如说2秒钟到达20%的进度&#xff0c;10秒钟加载20%到50%进度&#xff0c;1分钟加载50%到90%的进度&#xff0c;30秒…

2023年金融信创行业研究报告

第一章 行业概况 1.1 定义 金融信创是指在金融行业中应用的信息技术&#xff0c;特别是那些涉及到金融IT基础设施、基础软件、应用软件和信息安全等方面的技术和产品。这一概念源于更广泛的“信创 (信息技术应用创新)”&#xff0c;即通过中国国产信息技术替换海外信息技术&a…

ELK企业级日志分析平台——logstash

部署 新建一台虚拟机elk4部署logstash [rootelk4 ~]# yum install -y jdk-11.0.15_linux-x64_bin.rpm[rootelk4 ~]# yum install -y logstash-7.6.1.rpm 命令方式 [rootelk4 bin]# /usr/share/logstash/bin/logstash -e input { stdin { } } output { stdout {} } elasticsearc…

使用骨传导耳机会伤耳朵吗?一文读懂骨传导耳机有哪些优点

首先说明&#xff0c;如果是正确的使用骨传导耳机是不会伤耳朵。 一、骨传导耳机的传声原理是什么&#xff1f; 声音的传播需要介质&#xff0c;传统的耳机是通过空气来进行传播&#xff0c;也被称为“空气传导耳机”&#xff0c;而骨传导耳机最大的特别之处就在于&#xff0…

DFS序和欧拉序的降维打击

1. DFS 序和时间戳 1.1 DFS 序 定义&#xff1a;树的每一个节点在深度优先遍历中进、出栈的时间序列。 如下树的 dfs 序就是[1,2,8,8,5,5,2,4,3,9,9,3,6,6,4,7,7,1]。 下图为生成DFS的过程。对于一棵树进行DFS序&#xff0c;除了进入当前节点时对此节点进行记录&#xff0c;…

多线程Thread(初阶二:Thread类及常⻅⽅法)

目录 一、Thread 的常⻅构造⽅法 继承Thread代码&#xff1a; 实现Runnable接口代码: 二、Thread 的⼏个常⻅属性 1、id&#xff1a; 2、获取线程的名字。 3、进程的状态&#xff1a; 4、在java中设置的优先级&#xff0c; 5、是否后台线程&#xff0c; 6、是否存活&a…

ubuntu22.04 arrch64版在线安装node

脚本 #安装node#下载node、npm国内镜像&#xff08;推荐&#xff09;# 判断是否安装了nodeif type -p node; thenecho "node has been installed."elsemkdir -p /home/zenglg cd /home/zenglgwget https://registry.npmmirror.com/-/binary/node/v10.14.1/node-v10.…

Linux系统编程 day04 文件和目录操作

Linux系统编程 day04 文件和目录操作 1. 文件IO1.1 open 函数1.2 close函数1.3 read函数1.4 write函数1.5 lseek函数1.6 errno变量1.7 文件示例1 读写文件1.8 文件示例2 文件大小的计算1.9 文件示例3 扩展文件大小1.10 文件示例4 perror函数的使用1.11 阻塞与非阻塞的测试 2. 文…

关于「光学神经网络」的一切:理论、应用与发展

/目录/ 一、线性运算的光学实现 1.1. 光学矩阵乘法器 1.2. 光的衍射实现线性运行 1.3. 基于Rayleigh-Sommerfeld方程的实现方法 1.4. 基于傅立叶变换的实现 1.5. 通过光干涉实现线性操作 1.6. 光的散射实现线性运行 1.7. 波分复用&#xff08;WDM&#xff09;实现线性运…

脉冲幅度调制信号的功率谱计算

本篇文章是博主在通信等领域学习时&#xff0c;用于个人学习、研究或者欣赏使用&#xff0c;并基于博主对人工智能等领域的一些理解而记录的学习摘录和笔记&#xff0c;若有不当和侵权之处&#xff0c;指出后将会立即改正&#xff0c;还望谅解。文章分类在通信领域笔记&#xf…

风口下的危与机:如何抓住生成式AI黄金发展期?

回顾AI的发展历程&#xff0c;我们见证过几次重大突破&#xff0c;比如2012年ImageNet大赛的图像识别&#xff0c;2016年AlphaGo与李世石的围棋对决&#xff0c;这些进展都为AI的普及应用铺设了道路。而ChatGPT的出现&#xff0c;真正让AI作为一个通用的产品&#xff0c;走入大…

Linux | 创建 | 删除 | 查看 | 基本命名详解

Linux | 创建 | 删除 | 查看 | 基本命名详解 文章目录 Linux | 创建 | 删除 | 查看 | 基本命名详解前言一、安装Linux1.1 方法一&#xff1a;云服务器方式1.2 方法二&#xff1a;虚拟机方式 二、ls2.2 ll 三、which3.1 ls -ld 四、pwd五、cd5.1 cd .\.5.2 ls -al5.3 重新认识命…

程序员兼职需要收藏的防坑技巧

不管你是刚刚上车的新职员&#xff0c;还是职场经营多年的老手&#xff0c;在零散时间&#xff0c;通过兼职搞一点零花钱&#xff0c;充实一下自己的生活&#xff0c;这是在正常不过的事情&#xff0c;但是很多同学害怕兼职有风险&#xff0c;被骗或者说找不到门路&#xff0c;…

优思学院|质量工程师在汽车行业待遇好吗?

优思学院认为质量工程师在汽车行业的待遇有可能相对较好的。随着中国汽车品牌在国内市场的崛起&#xff0c;特别是在电动汽车领域的增长&#xff0c;质量工程师在保障产品质量和安全性方面变得非常重要。由于中国汽车制造商对产品质量的高度重视&#xff0c;质量工程师在制定和…

AC自动机(简单模板)

AC自动机&#xff0c;就相当于是在字典树上用kmp。next数组回退的位置为最大匹配字符串在字典树上的节点位置。 在获取字典树上的next数组的时候用的是BFS每次相当与处理的一层。 下图中红线为&#xff0c;可以回退的位置&#xff0c;没有红线的节点回退的位置都是虚拟原点。…

基于C#实现线段树

一、线段树 线段树又称"区间树”&#xff0c;在每个节点上保存一个区间&#xff0c;当然区间的划分采用折半的思想&#xff0c;叶子节点只保存一个值&#xff0c;也叫单元节点&#xff0c;所以最终的构造就是一个平衡的二叉树&#xff0c;拥有 CURD 的 O(lgN)的时间。 从…

关于同一接口有多个不同实现的设计方案

关于同一接口有多个不同实现的设计方案 前言 最近公司做了一个银行相关的项目&#xff0c;告诉我公司对接了多个银行的支付&#xff0c;每个银行都有对应的接口要去对接&#xff0c;比如&#xff1a;交易申请&#xff0c;交易取消&#xff0c;支付&#xff0c;回单&#xff0…