【论文阅读笔记】Smil: Multimodal learning with severely missing modality

Ma M, Ren J, Zhao L, et al. Smil: Multimodal learning with severely missing modality[C]//Proceedings of the AAAI Conference on Artificial Intelligence. 2021, 35(3): 2302-2310.[开源]

本文的核心思想是探讨和解决多模态学习中的一个重要问题:在训练和测试数据中严重缺失某些模态时,如何有效进行学习。具体来说,这里的“严重缺失”指的是在多达90%的训练样本中缺少一些模态信息。在过去的研究中,大多关注于如何处理测试数据的模态不完整性,而对于训练数据的模态不完整性,尤其是严重缺失的情况,探讨较少。文章提出了一种新的方法——SMIL(Severely Missing Modality in Multimodal Learning),使用贝叶斯元学习来同时实现两个目标:灵活性(在训练、测试或两者中处理缺失模态)和效率(从不完整的模态中高效学习)。核心思想是通过扰动潜在特征空间,使单一模态的嵌入能够近似全模态的嵌入。为了验证这一方法的有效性,作者在三个流行的基准数据集(MM-IMDb, CMU-MOSI 和 avMNIST)上进行了一系列实验。结果表明,SMIL在处理严重模态缺失的多模态学习问题方面,相比现有方法和生成型基准(如自编码器和生成对抗网络)具有更好的性能。

image-20231123084815031

  • 模态重建

模态重建是通过使用重建网络来实现的。该网络利用可用的模态信息来生成缺失模态的近似值,从而在潜在特征空间中生成完整的数据,并促进两个方面的灵活性。一方面,该模型可以通过使用完整和不完整的数据进行联合训练来挖掘混合数据的全部潜力。另一方面,在测试时,通过打开或关闭特征重建网络,该模型可以以统一的方式处理不完整或完整的输入。具体来说,重建网络被训练来预测先验权重的权重,而不是直接生成缺失模态。这是通过学习一组可以使用 K-means 或 PCA 在所有模态完整样本之间聚类的模态先验 M 来实现的。然后,通过计算模态先验的加权和来重建缺失模态。这种方法可以有效地处理缺失模态问题,并在实验中取得了良好的结果。

  • 不确定性引导特征正则化

该网络通过对特征进行扰动来评估数据的不确定性,并将不确定性评估用作特征正则化,以克服模型和数据偏差。具体来说,该网络使用一组随机噪声向量来扰动输入特征,并计算每个扰动的输出的方差。然后,将方差用作特征正则化的权重,以减少特征之间的差异。这种方法可以有效地处理低质量和不完整的特征,并提高多模态模型的鲁棒性和泛化能力。与之前的确定性正则化方法相比,不确定性引导特征正则化可以显著提高模型的容量和性能。

  • 贝叶斯元学习框架

通过利用贝叶斯元学习框架来联合优化所有网络实现的。具体来说,主网络 f θ f_{\theta} fθ在重构 f ϕ ϕ f_{\phi_{\phi}} fϕϕ网络和正则化 f ϕ r f_{\phi_{r}} fϕr网络的帮助下在 D m D_m Dm上进行元训练。然后,在 D f D_f Df上对更新后的主网络 f θ ∗ f_{\theta^{*}} fθ进行元测试。最后,通过梯度下降元更新网络参数 { θ , ϕ c , ϕ r } \left\{\boldsymbol{\theta}, \boldsymbol{\phi}_{c}, \boldsymbol{\phi}_{r}\right\} {θ,ϕc,ϕr}。该框架旨在优化目标函数,即最小化 L ( D f ; θ ∗ , ψ ) \mathcal{L}\left(\mathcal{D}^{f} ; \boldsymbol{\theta}^{*}, \boldsymbol{\psi}\right) L(Df;θ,ψ),其中 θ ∗ = θ − α ∇ θ L ( D m ; ψ ) \boldsymbol{\theta}^{*}=\boldsymbol{\theta}-\alpha \nabla_{\boldsymbol{\theta}} \mathcal{L}\left(\mathcal{D}^{m} ; \boldsymbol{\psi}\right) θ=θαθL(Dm;ψ) ψ = { ϕ c , ϕ r } \psi=\left\{\phi_{c}, \phi_{r}\right\} ψ={ϕc,ϕr}表示重构和正则化网络参数的组合。贝叶斯元学习的目标是最大化条件似然: log ⁡ p ( Y ∣ X ; θ ) \log p(\mathbf{Y} \mid \mathbf{X} ; \boldsymbol{\theta}) logp(YX;θ)。然而,解决它涉及到不可行的真后验 p ( z ∣ X ) p(z|X) p(zX)。因此,通过一种分摊分布 q ( z ∣ X ; ψ ) q(z|X;ψ) q(zX;ψ)来近似真后验分布,并且近似的下限形式可以定义为 L θ , ψ = E q ( z ∣ X ; θ , ψ ) [ log ⁡ p ( Y ∣ X , z ; θ ) ] − KL ⁡ [ q ( z ∣ X ; ψ ) ∥ p ( z ∣ X ) ] . \begin{aligned} \mathcal{L}_{\boldsymbol{\theta}, \boldsymbol{\psi}}=\boldsymbol{E}_{q(\mathbf{z} \mid \mathbf{X} ; \boldsymbol{\theta}, \boldsymbol{\psi})}[\log p(\mathbf{Y} \mid \mathbf{X}, \mathbf{z} ; \boldsymbol{\theta})]- & \operatorname{KL}[q(\mathbf{z} \mid \mathbf{X} ; \boldsymbol{\psi}) \| p(\mathbf{z} \mid \mathbf{X})] . \end{aligned} Lθ,ψ=Eq(zX;θ,ψ)[logp(YX,z;θ)]KL[q(zX;ψ)p(zX)].

我们通过蒙特卡罗(MC)抽样来最大化这个下界

image-20231123090948982

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/165801.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

JS中的OOP

JS中的OOP OOP 为我们解决了什么问题?想象一下,我们希望为教师提供一个平台,每位注册的教师都可以提交分数,并为课程分配作业和其他内容。 如果有一个地方(在本例中是一个对象),可以访问所有教…

Python编写的爬虫为什么受欢迎?

每每回想起我当初学习python爬虫的经历,当初遇到的各种困难险阻至今都历历在目。即便当初道阻且长,穷且益坚,我也从来没有想过要放弃。今天我将以我个人经历,和大家聊一聊有关Python语音编写的爬虫的事情。谈一谈为什么最近几年py…

多线程,线程池,线程的创建,线程池的参数

文章目录 多线程-1 高并发〇、使用多线程的场景1. 为什么使用多线程 1. 线程概述1.1 线程和进程1.2 并发和并行1.3 多线程的优势1.4 程序运行原理1.5 主线程 1.6 线程的 6 种状态2. 线程的创建和启动2.1 Thread类2.2创建线程有哪几种方法2.2.1 继承**Thread**类,重写…

centos7 安装docker

1.卸载旧版本,不管装没装过,执行一下,防止版本冲突 yum remove docker \ docker-client \ docker-client-latest \ docker-common \ docker-latest \ docker-latest-logrotate \ docker-logrotate \ docker-engine 2. yum安装gcc相关 以及 安…

electron27-react-mateos:基于electron+react18仿matePad桌面系统

基于Electron27React18ArcoDesign搭建桌面版OS管理系统。 electron-react-mateos 基于最新前端跨端技术栈electron27.xreact18arco-designzustand4sortablejs构建的一款仿制matePad界面多层级路由管理OS系统。 ElectronReactOS支持桌面多路由配置,新开窗口弹窗开启路…

YB4051系列设备是高度集成的 Li-lon 和 Li-Pol 线性充电器,针对便携式应用的小容量电池。

YB4051H 300mA 单电池锂离子电池充电器0.1 mA 终端,45nA 电池漏电流 概述: YB4051系列设备是高度集成的 Li-lon 和 Li-Pol 线性充电器,针对便携式应用的小容量电池。它是一个完整的恒流/恒压线性充电器。不需要外部感应电阻,由于…

51单片机利用I/O口高阻状态实现触摸控制LED灯

51单片机利用I/O口高阻状态实现触摸控制LED灯 1.概述 这篇文章介绍使用I/O口的高阻状态实现一个触摸控制LED灯亮灭的实验。该实验通过手触摸P3.7引脚,改变电平信号控制灯的亮灭。 2.实验过程 2.1.实验材料 名称型号数量单片机STC12C20521LED彩灯无1晶振12MHZ1电…

Elasticsearch:ES|QL 函数及操作符

如果你对 ES|QL 还不是很熟悉的话,请阅读之前的文章 “Elasticsearch:ES|QL 查询语言简介​​​​​​​”。ES|QL 提供了一整套用于处理数据的函数和运算符。 功能分为以下几类: 目录 ES|QL 聚合函数 AVG COUNT COUNT_DISTINCT 计数为近…

geemap学习笔记013:为遥感动态GIF图添加图名

前言 遥感动态GIF图可以展示地理区域随时间的变化,这对于监测自然灾害、湿地变化、城市扩展、农田变化等方面非常有用,并且可以反复观察图像,以更深入地了解地表的动态变化。本节主要是对遥感动态GIF图添加图名,以便于更好地理解…

聚观早报 |一加12正式开启预订;OPPO Reno11系列卖点

【聚观365】11月24日消息 一加12正式开启预订 OPPO Reno11系列卖点 小鹏第三季度营收财报 Claude 2.1 聊天机器人公布 现代汽车将与伦敦大学学院合作 一加12正式开启预订 全新的一加12系列公开亮相已有一段时间,不久前一加官方宣布,该机将于12月4日…

ebpf实战(一)-------监控udp延迟

问题背景: 为了分析udp数据通信中端到端的延迟,我们需要对整个通信链路的每个阶段进行监控,找出延迟最长的阶段. udp接收端有2个主要路径 1.数据包到达本机后,由软中断处理程序将数据包接收并放入udp socket的接收缓冲区 数据接收流程 2. 应用程序调用recvmsg等a…

<JavaEE> 什么是进程控制块(PCB Process Control Block)?

目录 一、进程控制块的概念 二、进程控制块的重要属性 2.1 唯一身份标识(PID) 2.2 内存指针 2.3 文件描述符表 2.4 状态 2.5 优先级 2.6 记账信息 2.7 上下文 一、进程控制块的概念 进程控制块(Process Control Block, PCB&#xff…

uni-app 跨端开发注意事项

文章目录 前言H5正常但App异常的可能性标题二H5正常但小程序异常的可能性小程序正常但App异常的可能性小程序或App正常,但H5异常的可能性App正常,小程序、H5异常的可能性使用 Vue.js 的注意区别于传统 web 开发的注意H5 开发注意微信小程序开发注意支付宝…

Docker实用篇

Docker实用篇 0.学习目标 1.初识Docker 1.1.什么是Docker 微服务虽然具备各种各样的优势,但服务的拆分通用给部署带来了很大的麻烦。 分布式系统中,依赖的组件非常多,不同组件之间部署时往往会产生一些冲突。在数百上千台服务中重复部署…

STM32入门笔记15_PWR电源管理模块

PWR和低功耗模式 PWR简介 PWR(Power Control) 电源控制PWR负责管理STM32内部的电源供电部分,可以实现可编程电压检测器和低功耗模式的功能可编程电压检测器(PVD) 可以监控VDD电源电压,当VDD下降到PVD阈值以下或上升到PVD阈值之上时,PVD会触…

C++学习之路(一)什么是C++?如何循序渐进的学习C++?【纯干货】

C是一种高级编程语言,是对C语言的扩展和增强。它在C语言的基础上添加了面向对象编程(OOP)的特性,使得开发者能够更加灵活和高效地编写代码。 C的名字中的“”符号表示在C语言的基础上向前发展一步,即“加加”&#x…

iOS APP包分析工具 | 京东云技术团队

介绍 分享一款用于分析iOSipa包的脚本工具,使用此工具可以自动扫描发现可修复的包体积问题,同时可以生成包体积数据用于查看。这块工具我们团队内部已经使用很长一段时间,希望可以帮助到更多的开发同学更加效率的优化包体积问题。 工具下载…

在VMware Workstation的Centos上实现KVM虚拟机的安装部署:详细安装部署过程(保姆级)

KVM概述 • 以色列qumranet公司研发,后被RedHad公司收购 (1)kvm只支持x86平台 (2)依赖于 HVM,inter VT AMD-v • KVM是(Kernel-based Virtual Machine)的简称,是一个开源的系统虚拟…

【Unity】 UGUI的PhysicsRaycaster (物理射线检测)组件的介绍及使用

1. 什么是PhysicsRaycaster组件? PhysicsRaycaster是Unity UGUI中的一个组件,用于在UI元素上进行物理射线检测。它可以检测鼠标或触摸事件是否发生在UI元素上,并将事件传递给相应的UI元素。 2. PhysicsRaycaster的工作原理 PhysicsRaycast…

【Proteus仿真】【51单片机】智能垃圾桶设计

文章目录 一、功能简介二、软件设计三、实验现象联系作者 一、功能简介 本项目使用Proteus8仿真51单片机控制器,使用报警模块、LCD1602液晶模块、按键模块、人体红外传感器、HCSR04超声波、有害气体传感器、SG90舵机等。 主要功能: 系统运行后&#xf…