深度学习动物识别 - 卷积神经网络 机器视觉 图像识别 计算机竞赛

文章目录

  • 0 前言
  • 1 背景
  • 2 算法原理
    • 2.1 动物识别方法概况
    • 2.2 常用的网络模型
      • 2.2.1 B-CNN
      • 2.2.2 SSD
  • 3 SSD动物目标检测流程
  • 4 实现效果
  • 5 部分相关代码
    • 5.1 数据预处理
    • 5.2 构建卷积神经网络
    • 5.3 tensorflow计算图可视化
    • 5.4 网络模型训练
    • 5.5 对猫狗图像进行2分类
  • 6 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 深度学习动物识别 - 卷积神经网络 机器视觉 图像识别

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:4分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 背景

目前,由于计算机能力和相关理论的发展获得了重大突破,基于深度学习的图像检测与识别技术已经广泛应用到人们的生产生活中。学长将深度学习的技术应用到野生动物图像识别中,优化了传统的识别方法,形成对野生动物图像更为准确的识别,为实现高效的野生动物图像识别提供了可能。不同于传统的野生动物识别,基于深度学习的野生动物识别技术可以捕获到野生动物更加细致的信息,有利于对野生动物进行更加准确的识别和研究。因此,对基于深度学习的野生动物识别和研究,可以更好的帮助社会管理者和政府全面有效的对野生动物进行保护和监管,这也正是保护和识别野生动物的关键,同时这对整个自然和社会的和谐发展具有极大的推动作用。

2 算法原理

2.1 动物识别方法概况

基于人工特征的野生动物识别方法主要通过人工对野生动物图像中具有辨识度的特征信息进行提取,并通过特征比对的方式就可以对野生动物所属的类别进行识别判断。

在深度学习技术普及之前,传统的数字图像处理技术与传统机器学习技术一直是研究的热点。传统的数字图像处理技术有模块分割、降低噪声点、边缘检测等方法。传统的机器学习技术有支持向量机、随机森林算法、BP
神经网络算法等。

深度学习技术是通过计算机模拟人类大脑的分层表达结构来建立网络模型,从原始数据集中对相关信息逐层提取。之后通过建立相应的神经网络对数据进行学习和分析,从而提高对目标预测和识别的准确率。如今,深度学习技术已经相对成熟,在对目标进行特征提取方面,卷积神经网络技术逐渐取代了传统的图像处理技术,并且在人类的生产生活中得到了广泛应用,这为研究野生动物更高效的识别方法奠定了基础。

2.2 常用的网络模型

图像识别是指对原始图像进行整体分析来达到预测原始图像所属类别的技术。计算机视觉领域中对图像识别技术进行了优化,与此同时,深度学习技术也对图像识别领域展开了突破。目前在图像识别领域中,研究人员开始使用深度学习的技术,并通过在实际应用中发现,基于深度学习的识别技术比传统的识别技术效果更好,且更具有优势。

2.2.1 B-CNN

双线性卷积神经网络(Bilinear
CNN,B-CNN)[34]是用两个卷积神经网络对图像进行特征提取,然后使用相应的函数将得到所有特征进行组合,组合的数据带入到分类器中进行分类。

在这里插入图片描述

2.2.2 SSD

经典的 SSD 模型是由经典网络和特征提取网络组成。

通过引入性能更好的特征提取网络对 SSD
目标检测模型进行了优化。Fu[49]等人提出了增加卷积神经网络层数和深度的方法用于提高识别准确率。通过实际应用之后,发现该方法识别准确率确实得到了一定程度的提高,但是模型结构却越来越复杂,同时对深层次的网络训练也越来越困难。

在这里插入图片描述

3 SSD动物目标检测流程

在这里插入图片描述

学长首先对 DenseNet-169 网络进行初始化,使用 DenseNet-169 网络作为目标检测的前置网络结构,并运用迁移学习的方法对
DenseNet-169 进行预训练,并将Snapshot Serengeti数据集下的权重值迁移到野生动物检测任务中,使数据集的训练速度得到提升。将
DenseNet-169 作为前置网络置于 SSD 中的目标提取检测网络之前,更换完前置网络的 SSD 目标检测网络依然完整。

4 实现效果

在这里插入图片描述
在这里插入图片描述

做一个GUI交互界面

在这里插入图片描述

5 部分相关代码

5.1 数据预处理

import cv2 as cv
import os
import numpy as npimport random
import pickleimport timestart_time = time.time()data_dir = './data'
batch_save_path = './batch_files'# 创建batch文件存储的文件夹
os.makedirs(batch_save_path, exist_ok=True)# 图片统一大小:100 * 100
# 训练集 20000:100个batch文件,每个文件200张图片
# 验证集 5000:一个测试文件,测试时 50张 x 100 批次# 进入图片数据的目录,读取图片信息
all_data_files = os.listdir(os.path.join(data_dir, 'train/'))# print(all_data_files)# 打算数据的顺序
random.shuffle(all_data_files)all_train_files = all_data_files[:20000]
all_test_files = all_data_files[20000:]train_data = []
train_label = []
train_filenames = []test_data = []
test_label = []
test_filenames = []# 训练集
for each in all_train_files:img = cv.imread(os.path.join(data_dir,'train/',each),1)resized_img = cv.resize(img, (100,100))img_data = np.array(resized_img)train_data.append(img_data)if 'cat' in each:train_label.append(0)elif 'dog' in each:train_label.append(1)else:raise Exception('%s is wrong train file'%(each))train_filenames.append(each)# 测试集
for each in all_test_files:img = cv.imread(os.path.join(data_dir,'train/',each), 1)resized_img = cv.resize(img, (100,100))img_data = np.array(resized_img)test_data.append(img_data)if 'cat' in each:test_label.append(0)elif 'dog' in each:test_label.append(1)else:raise Exception('%s is wrong test file'%(each))test_filenames.append(each)print(len(train_data), len(test_data))# 制作100个batch文件
start = 0
end = 200
for num in range(1, 101):batch_data = train_data[start: end]batch_label = train_label[start: end]batch_filenames = train_filenames[start: end]batch_name = 'training batch {} of 15'.format(num)all_data = {'data':batch_data,'label':batch_label,'filenames':batch_filenames,'name':batch_name}with open(os.path.join(batch_save_path, 'train_batch_{}'.format(num)), 'wb') as f:pickle.dump(all_data, f)start += 200end += 200# 制作测试文件
all_test_data = {'data':test_data,'label':test_label,'filenames':test_filenames,'name':'test batch 1 of 1'}with open(os.path.join(batch_save_path, 'test_batch'), 'wb') as f:pickle.dump(all_test_data, f)end_time = time.time()
print('制作结束, 用时{}秒'.format(end_time - start_time))

5.2 构建卷积神经网络

cnn卷积神经网络的编写如下,编写卷积层、池化层和全连接层的代码

conv1_1 = tf.layers.conv2d(x, 16, (3, 3), padding='same', activation=tf.nn.relu, name='conv1_1')
conv1_2 = tf.layers.conv2d(conv1_1, 16, (3, 3), padding='same', activation=tf.nn.relu, name='conv1_2')
pool1 = tf.layers.max_pooling2d(conv1_2, (2, 2), (2, 2), name='pool1')
conv2_1 = tf.layers.conv2d(pool1, 32, (3, 3), padding='same', activation=tf.nn.relu, name='conv2_1')
conv2_2 = tf.layers.conv2d(conv2_1, 32, (3, 3), padding='same', activation=tf.nn.relu, name='conv2_2')
pool2 = tf.layers.max_pooling2d(conv2_2, (2, 2), (2, 2), name='pool2')
conv3_1 = tf.layers.conv2d(pool2, 64, (3, 3), padding='same', activation=tf.nn.relu, name='conv3_1')
conv3_2 = tf.layers.conv2d(conv3_1, 64, (3, 3), padding='same', activation=tf.nn.relu, name='conv3_2')
pool3 = tf.layers.max_pooling2d(conv3_2, (2, 2), (2, 2), name='pool3')
conv4_1 = tf.layers.conv2d(pool3, 128, (3, 3), padding='same', activation=tf.nn.relu, name='conv4_1')
conv4_2 = tf.layers.conv2d(conv4_1, 128, (3, 3), padding='same', activation=tf.nn.relu, name='conv4_2')
pool4 = tf.layers.max_pooling2d(conv4_2, (2, 2), (2, 2), name='pool4')flatten = tf.layers.flatten(pool4)
fc1 = tf.layers.dense(flatten, 512, tf.nn.relu)
fc1_dropout = tf.nn.dropout(fc1, keep_prob=keep_prob)
fc2 = tf.layers.dense(fc1, 256, tf.nn.relu)
fc2_dropout = tf.nn.dropout(fc2, keep_prob=keep_prob)
fc3 = tf.layers.dense(fc2, 2, None)

5.3 tensorflow计算图可视化

self.x = tf.placeholder(tf.float32, [None, IMAGE_SIZE, IMAGE_SIZE, 3], 'input_data')
self.y = tf.placeholder(tf.int64, [None], 'output_data')
self.keep_prob = tf.placeholder(tf.float32)# 图片输入网络中
fc = self.conv_net(self.x, self.keep_prob)
self.loss = tf.losses.sparse_softmax_cross_entropy(labels=self.y, logits=fc)
self.y_ = tf.nn.softmax(fc) # 计算每一类的概率
self.predict = tf.argmax(fc, 1)
self.acc = tf.reduce_mean(tf.cast(tf.equal(self.predict, self.y), tf.float32))
self.train_op = tf.train.AdamOptimizer(LEARNING_RATE).minimize(self.loss)
self.saver = tf.train.Saver(max_to_keep=1)

最后的saver是要将训练好的模型保存到本地。

5.4 网络模型训练

然后编写训练部分的代码,训练步骤为1万步

acc_list = []
with tf.Session() as sess:sess.run(tf.global_variables_initializer())for i in range(TRAIN_STEP):train_data, train_label, _ = self.batch_train_data.next_batch(TRAIN_SIZE)eval_ops = [self.loss, self.acc, self.train_op]eval_ops_results = sess.run(eval_ops, feed_dict={self.x:train_data,self.y:train_label,self.keep_prob:0.7})loss_val, train_acc = eval_ops_results[0:2]acc_list.append(train_acc)if (i+1) % 100 == 0:acc_mean = np.mean(acc_list)print('step:{0},loss:{1:.5},acc:{2:.5},acc_mean:{3:.5}'.format(i+1,loss_val,train_acc,acc_mean))if (i+1) % 1000 == 0:test_acc_list = []for j in range(TEST_STEP):test_data, test_label, _ = self.batch_test_data.next_batch(TRAIN_SIZE)acc_val = sess.run([self.acc],feed_dict={self.x:test_data,self.y:test_label,self.keep_prob:1.0})test_acc_list.append(acc_val)print('[Test ] step:{0}, mean_acc:{1:.5}'.format(i+1, np.mean(test_acc_list)))# 保存训练后的模型os.makedirs(SAVE_PATH, exist_ok=True)self.saver.save(sess, SAVE_PATH + 'my_model.ckpt')

训练结果如下:

在这里插入图片描述

5.5 对猫狗图像进行2分类

在这里插入图片描述

在这里插入图片描述

6 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/163633.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

课堂巡课如何提升教学质量?简单才是硬道理

随着教育技术的不断发展,在线巡课系统逐渐成为学校管理和教育质量提升的重要工具。在线巡课系统通过数字化手段,为学校提供了更加高效、精准的巡课管理方式,有力地支持了教育教学的改进和优化。 客户案例 小学巡课项目 山东某小学引入了泛地…

8.5 Windows驱动开发:内核注册表增删改查

注册表是Windows中的一个重要的数据库,用于存储系统和应用程序的设置信息,注册表是一个巨大的树形结构,无论在应用层还是内核层操作注册表都有独立的API函数可以使用,而在内核中读写注册表则需要使用内核装用API函数,如…

海外媒体推广发稿平台这8种方法助你一臂之力-华媒舍

在全球经济一体化和信息技术快速进步的背景下,海外市场的开拓对于企业的发展至关重要。要在海外市场上取得成果并非易事,因此我们需要借助一些方法来帮助我们取得成功。其中,海外媒体推广发稿平台是非常有效的工具之一。本文将介绍8种方法&am…

SSM家具个性定制管理系统开发mysql数据库web结构java编程计算机网页源码eclipse项目

一、源码特点 SSM 家具个性定制管理系统是一套完善的信息系统,结合springMVC框架完成本系统,对理解JSP java编程开发语言有帮助系统采用SSM框架(MVC模式开发),系统具有完整的源代码和数据库,系统主要采用…

低代码表单设计器:可视化+灵活+易操作,降本增效轻松实现!

在现代化办公环境中,拥有先进的低代码表单设计器,可以让企业降本又增效,节约企业成本的同时,也能高效利用企业内部资源,为实现数字化转型升级提供夯实根基。那么,低代码表单设计器拥有什么样的特点&#xf…

张弛语言课,喜剧为什么使人快乐?

在为喜剧类电视剧或电影进行配音时,配音员需要展现出对幽默元素的敏感把握、对剧中笑料的恰到好处的呈现,以及对节奏的精确控制。喜剧的魅力在于其欢乐和幽默,所以配音工作的目标是激发观众的笑感,同时保持故事的流畅性和角色的个…

捷诚管理信息系统 SQL注入漏洞

声明 本文仅用于技术交流,请勿用于非法用途 由于传播、利用此文所提供的信息而造成的任何直接或者间接的后果及损失,均由使用者本人负责,文章作者不为此承担任何责任。 一、产品介绍 捷诚管理信息系统是一款功能全面,可以支持自…

地埋式积水监测仪厂家直销推荐,致力于积水监测

地埋式积水监测仪是一种高科技设备,能够实时监测地面积水深度,并及时发出预警信息,有效避免因积水而产生的安全隐患。这种智能监测仪可以安装在城市道路、立交桥、地下车库等易积水地势较低的地方,以确保及时监测特殊地段的积水&a…

数据库数据恢复—SQLserver数据库中勒索病毒被加密的数据恢复案例

SQLserver数据库数据恢复环境&故障: 一台服务器上的SQLserver数据库被勒索病毒加密,无法正常使用。该服务器上部署有多个SQLserver数据库,其中有2个数据库及备份文件被加密,文件名被篡改,数据库无法使用。 SQL se…

基于框架的线性回归

线性回归是机器学习中最简单和最常用的回归方法之一。它建立了自变量和因变量之间的线性关系,并通过拟合一条直线或超平面来预测和分析数据。 基于框架的线性回归是构建线性回归模型的一种常见方法,它利用现有的机器学习框架来实现线性回归模型的建立、…

企业邮箱即时提醒服务推荐

现在用企业邮箱比较多,但是不能即时提醒,总是误事,什么邮箱可以即时提醒呢?随着工作和生活节奏的加快,传统的电子邮件系统由于不能即时提醒,往往会导致重要邮件的漏接,从而引发一系列的麻烦和误…

Python基础【三】--数据类型-Number【2023.11.23】

1.数值类型 Number数据类型只要包括三个分别是:整型(int)、浮点型(float)、复数(complex) 整型:包括正整数、负整数。如:1024、-1024。整型有四种进制表示,分…

QGIS之二十五两个面图层数据中选择图形完全一致的数据

效果 步骤 1、准备数据 2、按位置选择 在Qgis工具箱中搜索"按位置选择"工具 选择要素和比较要素根据实际选择 运行 3、结果

解决错误0x80071ac3的问题,错误代码0x80071ac3的原因

在使用电脑的过程中可能会出现错误0x80071ac3的代码问题,一旦出现这样的问题解决起来可能会有点麻烦,其实这个错误是和磁盘的问题相关,可以将电脑重启尝试能否解决错误0x80071ac3问题,如果依然不能解决问题的话,那么大…

XC3320 离线式、无电感交流输入线性稳压器 可替代KP3310 固定5V输出电压

XC3320 是一款紧凑型无电感设计的离线式线性稳压器。XC3320 可获得 5V输出电压。XC3320 是一种简单可靠的获得偏置供电的离线式电源解决方案。XC3320 集成了 650V 功率 MOSFET,启动控制电路,VDD 电压控制电路,AC 交流信号同步检测电路,低压差稳压器等。该…

Linux免密登录——A登录B密钥设置(SSH SCP)

密钥登录 密钥登录比帐号密码方式更安全、更方便,并提供了更多的自动化和批处理选项。 安全性:使用非对称加密算法,公钥存在服务器,私钥存在本地计算机,私钥不在网络传输,降低被黑客截获风险。强密码&#…

Windows使用WSL编译自己的JDK

Windows使用WSL编译自己的JDK 一、获取源码二、构建编译环境三、进行编译验证编译结果 四、配置环境变量五、使用CLion进行调试 参考资料:《深入理解java虚拟机》 笔者使用的操作系统为windows,但是windows编译自己的jdk还是比较麻烦的,所以我…

张弛语言课奇幻剧配音,一场特殊的体验

在为奇幻剧进行配音时,配音艺术家要将自己投入到一个充斥着魔法、幻想生物和超自然现象的虚构世界中。奇幻剧侧重于构建一个超越现实的幻境,因此配音工作要求既要呈现角色的个性化特征,也要与剧中的奇幻氛围相得益彰。以下是进行奇幻剧配音的…

太神奇了!视频监控技术居然还能操作

随着科技的迅猛发展,视频监控系统在各个领域中的应用变得越来越广泛。从保护公共安全到提高工作效率,视频监控为我们提供了一种强大而多功能的工具。 视频监控技术已经成为我们日常生活和工作中不可或缺的一部分。通过视频监控,我们能够实时监…

shell循环语句 for while until

目录 什么是循环语句 概念 for循环 格式 while循环 格式 until 循环 格式 实验 for (1)计算1到100的和 ​编辑 (2)100以内的偶数 (从0开始到100结束,每次加2步 打印的都是偶数) &…