JVM垃圾回收相关算法

目录

一、前言

二、标记阶段:引用计数算法

三、标记阶段:可达性分析算法

(一)基本思路

(二)GC Roots对象

四、对象的finalization机制

五、MAT与JProfiler的GC Roots溯源

六、清除阶段:标记-清除算法Mark-Sweep

七、清除阶段:复制算法Copying

八、清除阶段:标记-整理算法Mark-Compact

九、对比三种算法

十、分代收集算法

十一、增量收集算法、分区算法


一、前言

对于Java开发人员而言,自动内存管理就像是一个黑匣子,如果过度依赖于“自动”,那么将会是一场灾难,最严重的莫过于弱化Java人员在程序出现内存溢出时定位问题和解决问题的能力。

所以了解JVM的自动内存分配和内存回收原理显得非常重要,在遇见OOM的时候才能快速的根据错误异常日志定位问题和解决问题。

当需要排查各种内存溢出,内存泄漏问题时,当垃圾收集成为系统达到更高并发量的瓶颈时,我们必须对这些“自动化”的技术实施必要的监控和调节。

垃圾回收器可以对年轻代和老年代进行回收,甚至是全堆和方法区的回收,其中,Java堆时垃圾收集器的工作重点

从次数上讲:频繁手机Young区,较少收集Old区,基本不动方法区

那么什么是垃圾?

垃圾是指运行程序中没有任何指针指向的对象,这个对象就是需要被回收的垃圾

二、标记阶段:引用计数算法

对每个对象保存一个整型的引用计数器属性,用于记录被对象引用的情况。被对象引用了就+1,引用失效就-1,0表示不可能再被使用,可进行回收

优点:实现简单,垃圾便于辨识,判断效率高,回收没有延迟性

缺点

  • 需要单独的字段存储计数器,增加了存储空间的开销
  • 每次赋值需要更新计数器,伴随加减法操作,增加了时间开销
  • 无法处理循环引用的情况,致命缺陷,导致JAVA的垃圾回收器中没有使用这类算法

引用计数算法,是很多语言的资源回收选择,例如python,它更是同时支持引用计数和垃圾回收机制,python如何解决循环引用

  • 手动解除
  • 使用弱引用,weakref,python提供的标准库,旨在解决循环引用

三、标记阶段:可达性分析算法

(一)基本思路

可达性分析算法是以根对象(GCRoots)为起始点,按照从上到下的方式搜索被根对象集合所连接的目标对象是否可达

使用可达性分析算法后,内存中存活的对象都被被根对象集合直接或间接连接着,搜索所走过的路径称为引用链。如果目标对象没有任何引用链相连,则是不可达的,意味着该对象已经死亡,可以标记为垃圾对象。

在可达性分析算法中,只有能够被根对象集合直接或者间接连接的对象才是存活的对象

(二)GC Roots对象

根对象(GC Roots)包括以下几种:

  1. 虚拟机栈中引用的对象,比如:各个线程被调用的方法中使用到的参数、局部变量
  2. 本地方法栈内JNI,引用的对象
  3. 方法区中静态属性引用的对象,比如:java类的引用类型静态变量
  4. 方法区中常量引用的对象,比如:字符串常量池里的引用
  5. 所有被同步锁synchronized持有的对象
  6. Java虚拟机内部的引用,比如:基本数据类型对应的class对象,一些常驻的异常对象,如nullpointerException,OOMerror,系统类加载器
  7. 反映java虚拟机内部情况的JMXBean,JVMTI中注册的回调,本地代码缓存等
  8.  除了固定的GC Roots集合之外,根据用户选择的垃圾收集器以及当前回收的内存区域不同,还可以有其他对象临时性的加入,共同构成完整GCRoots集合,比如分代收集和局部回收(比如专门针对新生代的回收,那么其他非新生代 对象比如老年代也应该考虑作为root对象。因为新生代中的某些对象有可能被老年代的对象引用。)

如果需要使用可达性分析算法来判断内存是否可回收,那么分析工作必须在一个能保障一致性的快照中进行。这点不满足的话,分析结果的准确性就无法保证。

这也是GC进行时必须STW的一个重要原因,即使是号称几乎不会发生停顿的CMS收集器中,枚举根节点也是必须要停顿的。

四、对象的finalization机制

Java语言提供了对象终止finaliztion机制来允许开发人员提供对象被销毁之前的自定义处理逻辑。当垃圾回收器发现没有引用指向一个对象,即垃圾回收此对象之前,总会先调用这个对象的finalize()方法。

finalize()方法允许在子类中被重写,用于在对象被回收时进行资源释放,通常在这个方法中进行一些资源释放和清理的工作,比如关闭文件,套接字和数据库链接等

对象的三种状态:

  • 可触及的:从根节点开始,可以到达这个对象
  • 可复活的:对象的所有引用都被释放了,但是对象有可能在finalize()中复活
  • 不可触及的:对象的finalize()被调用,并且没有复活,那么就会进入不可触及状态。不可触及的对象不可能被复活,因为finalize()只会被调用一次
  • 只有对象再不可触及时才可以被回收

判断一个对象ObjA是否可以被回收,至少需要经历两次标记过程

  • 1、如果对象到GCRoots没有引用链,则进行第一次标记
  • 2、进行筛选,判断此对象是否有必要执行finalize()方法
    • 如果对象A没有重写finalize方法,或者finalize方法已经被虚拟机调用过,则虚拟机视为没有必要执行,对象A被判定为不可触及的
    • 如果对象A重写finalize()方法,且还未执行过,那么A会被插入到F-queue队列中,有一个虚拟机自动创建的,低优先级的Finalizer线程触发其finalize()方法执行
    • finalize方法是对象逃脱死亡的最后机会,稍后GC会对F-queue队列中的对象进行第二次标记,如果A在finalize方法中与引用链上的任何一个对象建立了联系,那么在第二次标记时,A会被移除即将回收集合。之后,对象会再次出现没有引用存在的情况下,finalize方法不会再被调用,对象直接变为不可触及状态

public class CanRelliveObj {public static CanRelliveObj obj;@Overrideprotected void finalize() throws Throwable {super.finalize();System.out.println("调用当前类重写 finalize 方法");obj = this;}public static void main(String[] args) {try {// 先创建一个对象,分配下内存,不然重来没出现过何来回收一说obj = new CanRelliveObj();obj = null;System.gc(); // 回收时会调用对象的finalize方法,第一次调用成功拯救自己System.out.println("第一次 gc");// 因为Finalizer线程优先级很低,暂停2s,等待它Thread.sleep(2000);if(obj == null) {System.out.println("obj dead");} else {System.out.println("obj is still alive");}System.out.println("第二次 gc");obj = null;System.gc(); // 此时回收对象发现finalize方法已经被调用,所以直接进行回收if(obj == null) {System.out.println("obj dead");} else {System.out.println("obj is still alive");}} catch (Exception e) {}}
}

五、MAT与JProfiler的GC Roots溯源

MAT是Memory Analyzer的简称,是一款功能强大的Java堆内存分析器。用于查找内存泄露以及查看内存消耗情况,基于Eclipse开发的一款免费性能分析工具

可以用于分析GC Roots对象

六、清除阶段:标记-清除算法Mark-Sweep

标记:从引用根节点开始遍历,标记所有被引用的对象,一般是在对象Header中记录为可达对象

注意标记引用对象,不是垃圾对象

清除:对堆内存从头到尾进行线性的遍历,如果发现某个对象在其Header中没有标记为可达对象,则将其回收

缺点

  • 效率不算高
  • 在GC的时候,需要停止整个应用程序,导致用户体验差。
  • 这种方式清理出来的空闲内存不连续,产生内存碎片需要维护一个空闲列表

何为清除?

所谓的清除并不是真的置空,而是把需要清除的对象地址保存在空闲的地址列表里,下次有新对象需要加载时,判断垃圾的位置空间是否够,如果够就存放。

总结:第一次遍历标记可达对象,第二次遍历清除未标记对象。清除实际上是将未标记对象加入空闲列表,下次有新对象产生,判断空闲列表中垃圾的位置放不放的下,放得下就覆盖。

七、清除阶段:复制算法Copying

为了解决标记-清除算法在垃圾收集效率方面的缺陷——产生内存碎片。1963年出现了复制(Copying)算法

原理:将或者的内存空间分为两块,每次使用其中一块。在垃圾回收时,将正在使用的内存中的存活的对象复制到未被使用的内存块中,之后清除正在使用的内存块中的所有的对象,交换两个内存的角色,最后完成垃圾回收

优点

  • 没有标记和清除的过程,实现简单高效
  • 复制过去以后的保证空间的连续性,不会出现碎片的问题

缺点

  • 需要两倍的内存空间
  • 对于G1这种拆分为大量region的GC,复制而不是移动,意味着GC需要维护region之间的引用关系(就像对象的两种),不管是内存占用或者时间开销也不小。

注意:如果系统中的垃圾对象很多,需要复制的存活对象数量并不会太大,或者非常低使用复制算法效率才会高。想一想,如果每次复制都发现垃圾对象很少,基本每次复制都是全部移动,那效率肯定很低。

应用场景:

在新生代,对常规应用的垃圾回收,一次通常可以回收70%-90%的内存空间。回收性价比很高,所以现在的商业虚拟机都是用这种手机算法回收新生代。 (记得from区和to区吗,为什么总有一个区是空的,现在联系起来了。使用的就是是复制算法

八、清除阶段:标记-整理算法Mark-Compact

标记-整理又叫标记-压缩算法。

背景:复制算法的高效性是建议在存活对象少,垃圾对象多的前提下的。适用于新生代,而老年代大部分对象都是存活对象,所以并不适用,否则复制成本较高。因此,基于老年代垃圾回收的特性,需要使用其他算法。

标记-清除算法可以应用在老年代中,但是该算法不仅执行效率低下,而且执行完内存回收后还会产生内存碎片。所以JVM的设计者在此基础之上进行改进,标记-整理垃圾收集算法诞生了。

执行过程

  1. 第一个阶段和标记清除算法一样,从根节点开始标记所有被引用的对象
  2. 第二阶段将所有的存货对象压缩在内存的一端,按照顺序排放,之后清理边界外所有的空间
  3. 最终效果等同于标记清除算法执行完成后,再进行一次内存碎片整理。

与标记清除算法本质区别,标记清除算法是非移动式的算法,标记压缩是移动式的

优点

  • 消除了标记-清除算法内存区域分散的缺点,
  • 消除了复制算法中,内存减半的高额代价

缺点

  • 从效率上来讲,标记整理算法要低于复制算法
  • 移动对象的同时,如果对象被其他对象引用,则还需要调整引用的地址
  • 移动的过程中,需要全程暂停用户应用程序,即STW

九、对比三种算法

效率上来说,复制算法是最快的(因为不像标记-清除和标记整理那样需要标记,还有整理),但是浪费了太多的内存。 

而标记-整理算法相对来说更加平滑一些,但是效率上不太行,比复制算法多了一个标记的阶段,比标记-清除多了一个整理内存的阶段。

想到了一个问题:复制算法不标记怎么知道一个对象是否存活,是否需要进行复制?

即:复制算法不用进行标记吗?

查阅相关资料后,明白了。复制算法没有像标记-清除和标记-整理两个方法一样有单独的标记过程。因为复制gc只需要把“活”的对象拷贝到survivor,还要mark什么呢?至于怎么判断是“活”的,gc roots以下的不都是“活”的?复制算法是从gc roots开始,遇到活对象就复制走了。gc roots找可达对象的过程结束就复制完了。不像标记算法那样,对于一个对象是否需要回收要满足两个条件:① 对象不可达;②没必要执行finalize方法。

java gc中为什么复制算法比标记整理算法快? - 简书

十、分代收集算法

不同生命周期的对象可以采取不同额收集方式,以便提高回收效率

几乎所有的GC都采用分代收集算法执行垃圾回收的

HotSpot中

  • 年轻代:生命周期短,存活率低,回收频繁
  • 老年代:区域较大,生命周期长,存活率高,回收不及年轻代频繁

十一、增量收集算法、分区算法

(一)增量收集算法思想

每次垃圾收集线程只收集一小片区域的内存空间,接着切换到应用程序线程,依次反复,直到垃圾收集完成

通过对线程间冲突的妥善管理,允许垃圾收集线程以分阶段的方式完成标记、清理或复制工作

缺点:线程和上下文切换导致系统吞吐量的下降

(二)分区算法

为了控制GC产生的停顿时间,将一块大的内存区域分割成多个小块,根据目标的停顿时间,每次合理的回收若干个小区间,而不是整个堆空间,从而减少一次GC所产生的时间

分代算法是将对象按照生命周期长短划分为两个部分,分区算法是将整个堆划分为连续的不同的小区间

每一个小区间都独立使用,独立回收,这种算法的好处是可以控制一次回收多少个小区间

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/161983.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

基于PCA算法的点云平面拟合

平面拟合 1、平面拟合2、参考文献3、相关代码 1、平面拟合 PCA 是一种数学变换的方法,利用降维的思想在变换中保持变量的总方差不变,将给定的一组变量线性变换为另一组不相关的变量,并且使变换后的第一变量的方差最大,即第一主成分…

浅谈WPF之各种Template

前几天写了一篇文章【浅谈WPF之控件模板和数据模板】,有粉丝反馈说这两种模板容易弄混,不知道什么时候该用控件模块,什么时候该用数据模板,以及template和itemtemplate之间的关系等,今天专门写一篇文章,简述…

富士康转移产线和中国手机海外设厂,中国手机出口减少超5亿部

富士康和苹果转移生产线对中国手机制造造成了巨大的影响,除此之外,中国手机企业纷纷在海外设厂也在减少中国手机的出口,2022年中国的手机出口较高峰期减少了5.2亿部。 手机是中国的大宗出口商品,不过公开的数据显示2022年中国的手…

每日OJ题_算法_双指针_力扣202. 快乐数

力扣202. 快乐数 202. 快乐数 - 力扣(LeetCode) 难度 简单 编写一个算法来判断一个数 n 是不是快乐数。 「快乐数」 定义为: 对于一个正整数,每一次将该数替换为它每个位置上的数字的平方和。然后重复这个过程直到这个数变为…

RT-Thread 线程间同步【信号量、互斥量、事件集】

线程间同步 一、信号量1. 创建信号量2. 获取信号量3. 释放信号量4. 删除信号量5. 代码示例 二、互斥量1. 创建互斥量2. 获取互斥量3. 释放互斥量4. 删除互斥量5. 代码示例 三、事件集1. 创建事件集2. 发送事件3. 接收事件4. 删除事件集5. 代码示例 简单来说,同步就是…

DockerHub 无法访问 - 解决办法

背景 DockerHub 镜像仓库地址 https://hub.docker.com/ 突然就无法访问了,且截至今日(2023/11)还无法访问。 这对我们来说,还是有一些影响的: ● 虽然 DockerHub 页面无法访问,但是还是可以下载镜像的,只是比较慢而已 ● 没法通过界面查询相关镜像,或者维护相关镜像了…

【Rxjava详解】(二) 操作符的妙用

文章目录 接口变化操作符mapflatmapdebouncethrottleFirst()takeconcat RxJava 是一个基于 观察者模式的异步编程库,它提供了丰富的操作符来处理和转换数据流。 操作符是 RxJava 的核心组成部分,它们提供了一种灵活、可组合的方式来处理数据流&#xf…

【如何学习Python自动化测试】—— 多层窗口定位

6 、 多层窗口定位 多层窗口指的是在操作系统图形界面中,一个窗口被另一个窗口覆盖的情况。在多层窗口中,如何定位需要操作的窗口? 一种常见的方法是使用操作系统提供的AltTab快捷键,可以在打开的所有窗口中快速切换焦点。如果需要…

20231122给RK3399的挖掘机开发板适配Android12

20231122给RK3399的挖掘机开发板适配Android12 2023/11/22 9:30 主要步骤: rootrootrootroot-X99-Turbo:~$ tar --use-compress-programpigz -xvpf rk356x_android12_220722.tgz rootrootrootroot-X99-Turbo:~$ cd rk_android12_220722/ rootrootrootroot-X99-Tur…

带记忆的超级GPT智能体,能做饭、煮咖啡、整理家务!

随着AI技术的快速迭代,Alexa、Siri、小度、天猫精灵等语音助手得到了广泛应用。但在自然语言理解和完成复杂任务方面仍然有限。 相比文本的标准格式,语音充满复杂性和多样性(例如,地方话),传统方法很难适应不同用户的…

【每日OJ —— 20.有效的括号(栈)】

每日OJ —— 20.有效的括号(栈) 1.题目:20.有效的括号(栈)2.方法讲解2.1.解法2.1.1.算法讲解2.1.2.代码实现2.1.3.提交通过展示 1.题目:20.有效的括号(栈) 2.方法讲解 2.1.解法 利用…

2023 年 亚太赛 APMCM (B题)国际大学生数学建模挑战赛 |数学建模完整代码+建模过程全解全析

当大家面临着复杂的数学建模问题时,你是否曾经感到茫然无措?作为2022年美国大学生数学建模比赛的O奖得主,我为大家提供了一套优秀的解题思路,让你轻松应对各种难题。 问题一: 建立没有作物的玻璃温室内的温度和风速分…

MacOS 成为恶意软件活动的目标

Malwarebytes 警告称,一个针对 Mac 操作系统 (OS) 的数据窃取程序正在通过虚假的网络浏览器更新分发给毫无戒心的目标。 Atomic Stealer,也称为 AMOS,是 Mac OS 上流行的窃取程序。 Atomic Stealer (AMOS) 恶意软件最近被发现使用“ClearFa…

ImportError: cannot import name ‘contextfilter‘ from ‘jinja2‘解决方案

大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。喜欢通过博客创作的方式对所学的…

汇编-pop出栈指令

32位汇编 执行动作分为两步: 第一步:读出数据 第二步:改变栈地址 如果操作数是16位, 则ESP加2; 如果操作数是32位, 则ESP加4 espesp2 或 espesp4 格式:

IDEA中 java: 警告: 源发行版 11 需要目标发行版 11 如何解决

步骤1找到项目结构,下面有两种方式 步骤2找到 模块中对应的项目,修改对应的源的语言级别和依赖的模块SDK(M) 步骤3,启动一下,看有无问题, 步骤4,去文件-->设置-->构建、执行、部署-->编译器-->…

中职组网络安全B模块-渗透提权2

任务五:渗透提权2 任务环境说明: 仅能获取xxx的IP地址 用户名:test,密码:123456 访问服务器主机,找到主机中管理员名称,将管理员名称作为Flag值提交; Flag:doyoudoyoudo 访问服…

感恩三十载 再创新辉煌——中国音乐著作权协会成立30周年暨著作权集体管理制度实施30周年纪念大会在京召开

感恩三十载 再创新辉煌 2023年11月19日,中国音乐著作权协会成立30周年暨著作权集体管理制度实施30周年纪念大会在北京举行。中宣部副部长张建春,国际作者和作曲者协会联合会(CISAC)总干事甘迪奥龙(Gadi Oron&#xff0…

深入了解批处理文件:从基础到实例

1. 什么是批处理文件? 批处理文件是一种包含一系列命令的文本文件,通常用于自动化执行一系列任务。在不同操作系统中,批处理也有不同的名称,如在Windows中被称为批处理文件(.bat),而在Linux中则…