Vue 3 渲染机制解密:从模板到页面的魔法

Vue 3 渲染机制解密

  • 前言
  • Vue 3的响应性系统
      • 1. **Reactivity API:**
      • 2. **Proxy 对象:**
      • 3. **Getter 和 Setter:**
      • 4. **依赖追踪:**
      • 5. **批量更新:**
      • 6. **异步更新:**
      • 7. **递归追踪:**
      • 8. **删除属性:**
  • 虚拟DOM的角色
      • 1. **减少直接操作真实 DOM:**
      • 2. **高效的批量更新:**
      • 3. **跨平台开发:**
      • 4. **提高开发体验:**
      • 5. **具备优化空间:**
      • 6. **简化复杂度:**
  • 模板编译
      • 1. **词法分析(Lexical Analysis):**
      • 2. **优化(Optimization):**
      • 3. **生成代码(Code Generation):**
      • 4. **创建渲染函数:**
      • 5. **渲染和更新:**
  • 渲染函数与VNode
      • 1. **渲染函数的基本结构:**
      • 2. **创建 VNode:**
      • 3. **嵌套子节点:**
      • 4. **动态数据绑定:**
      • 5. **递归调用渲染函数:**
  • Diff算法
      • 1. **Diff 算法的基本思想:**
      • 2. **Key 的作用:**
      • 3. **Diff 算法的三个阶段:**
      • 4. **Diff 算法的优化手段:**
      • 5. **Diff 算法的时间复杂度:**
  • 异步更新
      • 1. **nextTick 的基本原理:**
      • 2. **nextTick 的用法:**
      • 3. **nextTick 的应用场景:**
      • 4. **nextTick 的注意事项:**
      • 5. **示例:**
  • 生命周期钩子
      • 1. **创建阶段(Creation):**
      • 2. **挂载阶段(Mounting):**
      • 3. **更新阶段(Updating):**
      • 4. **卸载阶段(Unmounting):**
      • 5. **错误处理阶段:**
      • 6. **示例:**
  • 渲染过程中的优化策略
      • 1. **虚拟 DOM 的静态提升(Static Hoisting):**
      • 2. **静态节点提升(Static Node Hoisting):**
      • 3. **事件处理函数的缓存:**
      • 4. **事件的冒泡处理:**
      • 5. **动态属性的提升:**
      • 6. **事件的合并处理:**
      • 7. **节点的缓存:**
      • 8. **合并相邻文本节点:**
      • 9. **scoped slots 的优化:**
      • 10. **响应式数据的缓存:**
  • 动态组件与懒加载
      • 1. **动态组件:**
      • 2. **懒加载:**
        • a. **异步组件:**
        • b. **工厂函数:**
      • 3. **结合动态组件和懒加载:**
  • 实例
  • 结尾

前言

在我们的前端世界中,页面的渲染是一个看似简单却底层复杂的过程。Vue 3的渲染机制正是通过一系列魔法的步骤,将你编写的模板转变为用户所看到的页面。在这篇文章中,我们将揭开Vue 3的渲染魔法,带你走进虚拟DOM的奇妙世界。
在这里插入图片描述

Vue 3的响应性系统

Vue 3 的响应性系统基于 Proxy 对象,相较于 Vue 2 使用的 Object.defineProperty,它提供了更好的性能和更多的特性。以下是 Vue 3 响应性系统的一些关键概念:

1. Reactivity API:

Vue 3 引入了新的 Reactivity API,包括 reactivereftoRefs 等函数,用于创建响应式数据。

  • reactive 将对象转化为响应式对象。

    import { reactive } from 'vue';const state = reactive({count: 0,
    });
    
  • ref 将基本数据类型包装为响应式对象。

    import { ref } from 'vue';const count = ref(0);
    
  • toRefs 将响应式对象转化为普通对象,其中每个属性都是 ref。

    import { reactive, toRefs } from 'vue';const state = reactive({count: 0,
    });const { count } = toRefs(state);
    

2. Proxy 对象:

Vue 3 使用 Proxy 对象来追踪对象的变化。Proxy 允许拦截对象的操作,比如读取、设置、删除属性等。这使得 Vue 3 可以更精确地追踪数据的变化。

3. Getter 和 Setter:

当访问响应式对象的属性时,Vue 3 会通过 Proxy 的 getter 拦截器来追踪这个属性的依赖关系。当修改属性时,Vue 3 会通过 setter 拦截器来触发重新渲染。

4. 依赖追踪:

Vue 3 使用了一种称为“依赖追踪”的机制,它会在组件渲染过程中追踪响应式数据的依赖关系。当数据变化时,Vue 3 可以精确地知道哪些组件需要重新渲染。

5. 批量更新:

Vue 3 会对触发 setter 操作的地方进行批量更新,以减少重复的渲染操作,提高性能。

6. 异步更新:

Vue 3 在更新响应式数据时采用异步更新的策略,这意味着数据变化后不会立即触发重新渲染,而是等到整个事件循环结束后再进行一次更新。这有助于避免不必要的重复渲染。

7. 递归追踪:

Vue 3 能够递归地追踪嵌套对象的变化,保证整个对象树的响应性。

8. 删除属性:

当删除对象的属性时,Vue 3 也能够追踪到这个操作,从而触发重新渲染。

这些概念构成了 Vue 3 的响应性系统,使得 Vue 3 在数据变化时能够高效地追踪依赖关系,并触发相应的重新渲染。这一改进带来了更好的性能和更精确的响应式数据追踪。

虚拟DOM的角色

虚拟 DOM(Virtual DOM)是一种在内存中维护的抽象表示,用于描述真实 DOM 的结构。Vue 3 中依然使用虚拟 DOM,其主要作用是优化 DOM 操作的效率,提高渲染性能。以下是虚拟 DOM 在 Vue 3 中的角色和作用:

1. 减少直接操作真实 DOM:

直接操作真实 DOM 是一项昂贵的操作,因为每次更新都会导致浏览器的重排和重绘。虚拟 DOM 充当了一个缓冲区,组件的变化首先在虚拟 DOM 中进行,然后通过算法比对,最终只更新真实 DOM 中实际变化的部分。

2. 高效的批量更新:

虚拟 DOM 允许 Vue 3 在内存中进行高效的批量更新。组件的状态变化会首先在虚拟 DOM 中反映出来,然后通过比对算法找到真实 DOM 中需要更新的部分。这样 Vue 3 可以收集多个状态变化,然后一次性更新真实 DOM,减少了重排和重绘的次数。

3. 跨平台开发:

虚拟 DOM 的抽象特性使得 Vue 3 能够更轻松地支持跨平台开发,例如在浏览器中以及在 NativeScript 或 Weex 等平台上运行。Vue 3 的渲染器(Renderer)可以根据目标平台生成相应的真实 DOM 操作。

4. 提高开发体验:

使用虚拟 DOM 可以提高开发体验,因为它允许开发者在更新过程中更轻松地理解组件状态的变化。开发者可以专注于描述期望的 UI 结构,而不必关心底层 DOM 操作的细节。

5. 具备优化空间:

虚拟 DOM 具备一定的优化空间,因为它可以根据具体的应用场景和算法来进行不同程度的优化。例如,Vue 3 可以通过合并多个更新操作,最小化 DOM 操作,以提高性能。

6. 简化复杂度:

使用虚拟 DOM 可以简化复杂度。由于虚拟 DOM 是组件状态的抽象表示,它帮助 Vue 3 在多个层次上进行状态的管理,使得组件更新的过程更加可控和可预测。

总的来说,虚拟 DOM 在 Vue 3 中的作用是通过在内存中维护一个抽象表示来优化 DOM 操作,提高渲染性能,并为跨平台开发提供支持。它允许开发者更高效地更新组件状态,提供了一层抽象,隐藏了底层 DOM 操作的复杂性。

模板编译

Vue 3 的模板编译过程是将模板转化为渲染函数,这个过程包含了一系列的步骤,其中涉及到词法分析、语法分析、优化和生成代码等。以下是 Vue 3 模板编译的基本流程:

1. 词法分析(Lexical Analysis):

首先,Vue 3 会对模板进行词法分析,将模板字符串转化为一系列的词法单元(tokens)。词法分析的任务是将模板字符串拆分为一个个的词法单元,每个词法单元表示模板中的一个语法结构。

在词法分析的基础上,Vue 3 进行语法分析,构建抽象语法树(Abstract Syntax Tree,AST)。AST 是一种树状的数据结构,表示了模板中各个语法结构之间的关系。语法分析的目的是理解模板的结构,为后续的优化和代码生成提供基础。

2. 优化(Optimization):

经过语法分析后,Vue 3 会对 AST 进行一些优化操作,例如静态节点提升、静态属性提升等。这些优化步骤旨在减少运行时的开销,提高渲染性能。Vue 3 在编译阶段就可以识别出那些在渲染过程中不会发生变化的部分,从而进行静态提升。

3. 生成代码(Code Generation):

经过优化的 AST 将被用于生成渲染函数。Vue 3 利用生成的渲染函数来动态地生成最终的渲染代码。渲染函数负责根据组件的状态(响应式数据)生成 Virtual DOM,并最终更新到真实 DOM。生成的代码是一段 JavaScript 代码,它包含了模板中的逻辑和渲染行为。

4. 创建渲染函数:

通过生成的渲染代码,Vue 3 将其包装成一个渲染函数。这个渲染函数接受组件实例的状态作为参数,然后执行渲染逻辑,生成 Virtual DOM。

5. 渲染和更新:

生成的渲染函数将被用于初始化组件的渲染,以及在组件状态变化时触发的更新。渲染函数的执行结果是 Virtual DOM,Vue 3 会利用这个 Virtual DOM 进行比对(diff)和最终的 DOM 更新。

总的来说,Vue 3 的模板编译过程是一个将模板转化为渲染函数的复杂流程,它通过词法分析、语法分析、优化和代码生成等步骤,最终生成可以动态执行的渲染函数。这个渲染函数负责根据组件的状态生成 Virtual DOM,并在状态变化时更新真实 DOM,从而实现视图的动态变化。

渲染函数与VNode

在 Vue 3 中,渲染函数的主要任务是根据组件的状态(响应式数据)生成虚拟节点(VNode)树。以下是 Vue 3 中渲染函数生成 VNode 树的基本过程:

1. 渲染函数的基本结构:

Vue 3 的渲染函数是一个普通的 JavaScript 函数,接收一个参数,通常是上下文对象,包括组件的状态、props、slots 等信息。渲染函数的基本结构如下:

function render() {// 渲染逻辑
}

2. 创建 VNode:

渲染函数的核心是创建虚拟节点(VNode)。VNode 是对真实 DOM 的抽象表示,它描述了节点的类型、属性、子节点等信息。Vue 3 提供了 h 函数(createElement 的别名)来创建 VNode。

import { h } from 'vue';function render() {return h('div', { class: 'container' }, 'Hello, Vue 3!');
}

上述代码中,h 函数接受三个参数:节点类型(字符串或组件)、属性对象、子节点。这样,h 函数将创建一个表示 <div class="container">Hello, Vue 3!</div> 的 VNode。

3. 嵌套子节点:

渲染函数可以嵌套调用 h 函数,以构建包含子节点的 VNode 树。子节点可以是字符串、数组、其他 VNode 等。

import { h } from 'vue';function render() {return h('div', { class: 'container' }, [h('p', 'Paragraph 1'),h('p', 'Paragraph 2'),]);
}

上述代码中,h 函数构建了一个包含两个段落的 <div> 元素。

4. 动态数据绑定:

渲染函数中可以使用组件的状态(响应式数据)来动态绑定数据。

import { h, reactive } from 'vue';function render() {const state = reactive({message: 'Hello, Vue 3!',});return h('div', { class: 'container' }, state.message);
}

在这个例子中,state.message 是一个响应式数据,当其发生变化时,渲染函数会自动更新生成的 VNode。

5. 递归调用渲染函数:

渲染函数可以递归调用自身,实现动态的 VNode 生成。

import { h } from 'vue';function renderList(items) {return h('ul', items.map(item => h('li', item)));
}function render() {const data = ['Item 1', 'Item 2', 'Item 3'];return renderList(data);
}

在这个例子中,renderList 函数递归调用 h 函数,生成了一个动态列表的 VNode。

总体而言,Vue 3 的渲染函数通过调用 h 函数来创建虚拟节点,这些虚拟节点组成了一个 VNode 树。这个 VNode 树在组件状态变化时会被动态更新,最终用于实现视图的动态渲染。这种虚拟节点的抽象使得 Vue 3 能够更高效地处理组件的渲染和更新,减少了直接操作真实 DOM 的开销。

Diff算法

Vue 3 中使用的 Virtual DOM Diff 算法,也称为 “patch” 算法,是一种智能比较 Virtual DOM 的算法,旨在最小化对真实 DOM 的操作次数,提高渲染性能。以下是 Vue 3 中 Diff 算法的核心原理和一些优化手段:

1. Diff 算法的基本思想:

Diff 算法的基本思想是通过比较新旧 VNode 的结构,找出两者之间的差异,然后只对差异部分进行更新。这样可以避免对整个真实 DOM 进行不必要的操作,提高渲染效率。

2. Key 的作用:

Vue 3 中,每个 VNode 都可以附带一个唯一的 key 值。Key 的作用是帮助 Diff 算法识别 VNode 的唯一性,从而在更新过程中更精确地定位差异。通过 key,Diff 算法能够识别出新旧 VNode 中哪些节点是相同的,哪些是新增、删除或需要更新的。

3. Diff 算法的三个阶段:

Diff 算法可以分为三个阶段:新旧 VNode 的比较、差异的打补丁、打补丁到真实 DOM

  • 比较阶段: 对新旧 VNode 进行深度优先遍历,比较节点类型、key、data 等,找出相同节点和需要更新的节点。

  • 打补丁阶段: 将比较的结果应用到真实 DOM 上,只对差异部分进行更新,减少 DOM 操作。

  • 应用到真实 DOM 阶段: 将差异应用到真实 DOM,这一步骤使用递归和迭代的方式,确保整个差异树都被正确地应用到真实 DOM 中。

4. Diff 算法的优化手段:

Vue 3 的 Diff 算法通过一些优化手段,减少了比较的复杂度和提高了性能。

  • 相同节点的直接复用: 如果新旧 VNode 是相同的(类型相同、key 相同),则直接复用旧节点,不再深入比较子节点。

  • 静态节点提升: 对于静态节点,即不会发生变化的节点,Diff 算法会在比较时将其提升为常量,避免不必要的比较。

  • 节点的缓存: Diff 算法会缓存已经比较过的节点,减少重复比较的次数。

  • 文本节点的优化: 对于文本节点,Diff 算法会直接比较文本内容,避免不必要的 DOM 操作。

  • Key 的作用: 合理使用 key,有助于 Diff 算法的性能优化,提高节点比较的精确性。

5. Diff 算法的时间复杂度:

Vue 3 的 Diff 算法的时间复杂度是 O(n),其中 n 是节点的数量。这是因为 Diff 算法会通过 key 来标识相同节点,从而避免不必要的节点比较。

总体而言,Vue 3 的 Diff 算法通过对比新旧 VNode,找出它们之间的差异,并通过一系列的优化手段来减少 DOM 操作次数,提高了渲染性能。 Key 的合理使用和一些优化手段使得 Diff 算法在大多数情况下能够高效地工作。

异步更新

在 Vue 3 中,通过 nextTick 方法实现异步更新,确保在数据变化后的下一刻进行渲染。nextTick 利用了 JavaScript 的事件循环机制,将回调函数推迟到下一个事件循环中执行。以下是 nextTick 的基本原理和用法:

1. nextTick 的基本原理:

nextTick 利用 JavaScript 的事件循环(Event Loop)机制,将回调函数推迟到下一个事件循环中执行。在 Vue 3 中,nextTick 被用于在数据发生变化后等待一轮事件循环,然后执行回调函数,以确保在更新数据后进行 DOM 渲染。

2. nextTick 的用法:

在 Vue 3 中,nextTick 是通过 Vue 实例的 $nextTick 方法提供的。你可以在组件内或全局使用 $nextTick

// 在组件内使用
export default {methods: {someMethod() {// 在数据变化后执行回调this.$nextTick(() => {// DOM 更新完成后的操作});},},
};
// 在全局使用
import { nextTick } from 'vue';nextTick(() => {// 在数据变化后执行回调// DOM 更新完成后的操作
});

3. nextTick 的应用场景:

  • 在更新数据后获取更新后的 DOM: 当数据更新后,可能需要获取更新后的 DOM 元素,例如在计算元素的尺寸或位置等。

  • 在数据变化后执行一些操作: 当数据变化后,需要执行一些操作,但希望在 DOM 更新完成后再执行,可以使用 nextTick

  • 在 Vue 生命周期钩子中的异步操作: 在 Vue 生命周期钩子中进行一些异步操作时,为了确保 DOM 已经更新,可以使用 nextTick

4. nextTick 的注意事项:

  • nextTick 不保证异步执行的顺序: 多个 nextTick 回调的执行顺序不一定是按照它们被调用的顺序。

  • nextTick 不会等待整个事件循环结束: nextTick 只会等待当前事件循环内的所有操作完成,而不是整个事件循环。

5. 示例:

下面是一个简单的示例,演示了如何使用 nextTick 在数据更新后获取更新后的 DOM:

<template><div ref="myElement">{{ message }}</div>
</template><script>
export default {data() {return {message: 'Hello, Vue 3!',};},mounted() {this.message = 'Updated Message';// 使用 nextTick 在数据更新后获取更新后的 DOMthis.$nextTick(() => {const updatedElement = this.$refs.myElement;console.log(updatedElement.innerText); // 输出:Updated Message});},
};
</script>

在这个示例中,mounted 钩子中更新了数据 message,然后使用 nextTick 在数据更新后获取了更新后的 DOM 元素。

生命周期钩子

Vue 3 的生命周期包括创建阶段、更新阶段和销毁阶段,每个阶段都有相应的生命周期钩子函数。以下是 Vue 3 中主要的生命周期钩子函数,以及在不同阶段发生了什么:

1. 创建阶段(Creation):

  • beforeCreate: 在实例初始化之后,数据观测和事件配置之前被调用。此时实例还未初始化,因此无法访问数据和实例方法。

  • created: 在实例创建完成后被调用。此时实例已经完成了数据观测、属性和方法的运算,但是挂载阶段还未开始。在这个阶段,可以访问数据、实例方法,但无法访问 DOM。

2. 挂载阶段(Mounting):

  • beforeMount: 在挂载开始之前被调用。在此时,模板编译完成,但尚未将模板渲染成真实的 DOM。

  • mounted: 在挂载完成之后被调用。此时实例已经挂载到 DOM 上,可以访问到模板渲染后的内容。这是执行初始渲染的理想位置。

3. 更新阶段(Updating):

  • beforeUpdate: 在数据更新时调用,发生在虚拟 DOM 重新渲染和打补丁之前。在这个时候,DOM 尚未更新。

  • updated: 在数据更新之后被调用,发生在虚拟 DOM 重新渲染和打补丁之后。在这个阶段,可以执行依赖于 DOM 的操作。

4. 卸载阶段(Unmounting):

  • beforeUnmount: 在卸载开始之前被调用。在这个时候,实例仍然完全可用。

  • unmounted: 在卸载完成之后被调用。在这个时候,实例已经被销毁,无法再访问数据和方法。

5. 错误处理阶段:

  • errorCaptured: 在子组件抛出错误时被调用。它会向上冒泡并在父组件中触发 errorCaptured 钩子。可以用于捕获组件树中任一组件的错误。

6. 示例:

以下是一个简单的组件,展示了不同生命周期钩子的执行顺序:

<template><div>{{ message }}</div>
</template><script>
export default {data() {return {message: 'Hello, Vue 3!',};},beforeCreate() {console.log('beforeCreate: ' + this.message);},created() {console.log('created: ' + this.message);},beforeMount() {console.log('beforeMount: ' + this.message);},mounted() {console.log('mounted: ' + this.message);},beforeUpdate() {console.log('beforeUpdate: ' + this.message);},updated() {console.log('updated: ' + this.message);},beforeUnmount() {console.log('beforeUnmount: ' + this.message);},unmounted() {console.log('unmounted: ' + this.message);},
};
</script>

在控制台中你可以看到生命周期钩子函数的执行顺序,以及每个阶段发生的时机。这有助于理解 Vue 3 中组件生命周期的整个生命周期过程。

渲染过程中的优化策略

Vue 3 在渲染过程中采用了一系列的优化策略,以提高页面的渲染性能。以下是一些常见的优化策略:

1. 虚拟 DOM 的静态提升(Static Hoisting):

在编译阶段,Vue 3 会通过静态分析,将那些不会改变的节点标记为静态节点,并在渲染时直接使用常量,减少对这些节点的比较和渲染开销。这一优化策略被称为静态提升,可以显著减少 Virtual DOM 的创建和比较的工作量。

2. 静态节点提升(Static Node Hoisting):

类似于静态提升,静态节点提升是通过标记和提升纯静态的子节点,将其放置在渲染函数之外,只计算一次,减少不必要的计算。

3. 事件处理函数的缓存:

Vue 3 会为事件处理函数生成缓存,以避免在每次渲染时都创建新的函数。这种缓存机制可以提高事件处理的效率,特别是在包含循环的场景中。

4. 事件的冒泡处理:

Vue 3 优化了事件的冒泡处理机制,通过合并相同类型的事件监听器,减少了事件处理的开销。

5. 动态属性的提升:

Vue 3 在编译阶段会对动态绑定的属性进行提升,将其作为局部变量存储,避免重复计算和创建。

6. 事件的合并处理:

当存在相同的事件监听器时,Vue 3 会合并它们,以减少渲染时的监听器数量。这种合并机制有助于减少 DOM 操作的成本。

7. 节点的缓存:

Vue 3 使用缓存机制,避免重复创建相同类型的节点。当相同类型的节点需要被创建时,Vue 3 会直接复用之前的节点,减少创建和销毁的开销。

8. 合并相邻文本节点:

Vue 3 在渲染时会尽量合并相邻的文本节点,减少 DOM 操作的次数。

9. scoped slots 的优化:

Vue 3 在处理 scoped slots 时,采用了更高效的算法,以减少渲染时的性能开销。

10. 响应式数据的缓存:

Vue 3 对响应式数据进行了缓存,避免重复计算,提高数据访问的效率。

这些优化策略的引入使得 Vue 3 在渲染过程中更加高效,减少了不必要的计算和 DOM 操作,从而提高了页面的渲染性能。当然,具体的优化效果还受到页面结构、数据规模等因素的影响,因此在实际项目中,综合考虑多个方面来进行性能优化是非常重要的。

动态组件与懒加载

在大型应用中,通过动态组件和懒加载可以有效优化渲染性能,减少初始加载时间。以下是如何使用动态组件和懒加载的方法:

1. 动态组件:

动态组件是指在运行时动态地选择和渲染不同的组件。在 Vue 中,你可以使用 component 元素并通过 is 属性来实现动态组件的切换。

<template><div><component :is="currentComponent"></component></div>
</template><script>
import ComponentA from './ComponentA.vue';
import ComponentB from './ComponentB.vue';export default {data() {return {currentComponent: 'ComponentA',};},methods: {switchComponent() {this.currentComponent = (this.currentComponent === 'ComponentA') ? 'ComponentB' : 'ComponentA';},},
};
</script>

在上面的例子中,<component :is="currentComponent"></component> 根据 currentComponent 的值动态渲染不同的组件。

2. 懒加载:

懒加载是指只在组件需要时再去加载对应的代码和资源。在 Vue 中,你可以使用异步组件和工厂函数来实现懒加载。

a. 异步组件:
const AsyncComponent = () => import('./AsyncComponent.vue');export default {components: {AsyncComponent,},
};

在上述代码中,import('./AsyncComponent.vue') 返回一个 Promise,Vue 在需要渲染这个组件时才会执行这个 Promise,加载对应的组件代码。

b. 工厂函数:
const AsyncComponent = () => ({component: import('./AsyncComponent.vue'),loading: LoadingComponent,delay: 200, // 加载组件前的延迟时间timeout: 3000, // 加载超时时间
});export default {components: {AsyncComponent,},
};

工厂函数返回一个对象,其中的 component 是一个 Promise,其他字段用于配置加载过程中的显示。

3. 结合动态组件和懒加载:

你可以将动态组件和懒加载结合起来,以实现在需要时才加载和渲染组件。

<template><div><component :is="currentComponent"></component><button @click="switchComponent">Switch Component</button></div>
</template><script>
export default {data() {return {currentComponent: null,};},methods: {switchComponent() {import('./DynamicComponent.vue').then(module => {this.currentComponent = module.default;});},},
};
</script>

在这个例子中,switchComponent 方法中使用 import 异步加载了 DynamicComponent.vue 组件,然后将其赋值给 currentComponent,从而实现了懒加载和动态组件的结合使用。

通过动态组件和懒加载的优化,你可以延迟加载大型应用中的部分组件,从而提升初始加载速度,降低首次渲染的时间成本。

实例

理论知识的应用通常会依赖于具体的项目场景和需求。下面我将演示一个实例,使用Vue 3的动态组件和懒加载来优化一个简单的多页面应用(Multi-Page Application,MPA)。

假设我们有一个多页面应用,包含两个页面:首页(Home)和关于页(About)。我们希望在用户访问不同页面时,才加载并渲染相应的组件,以提高初始加载速度。

首先,我们创建两个页面组件:

Home.vue:

<template><div><h1>Welcome to the Home Page!</h1><!-- Home Page Content --></div>
</template>

About.vue:

<template><div><h1>About Us</h1><!-- About Page Content --></div>
</template>

接下来,我们创建一个布局组件(Layout),用于容纳不同页面的内容。在这个布局组件中,我们使用动态组件和懒加载来实现按需加载:

Layout.vue:

<template><div><header><nav><router-link to="/">Home</router-link> |<router-link to="/about">About</router-link></nav></header><main><!-- 使用动态组件根据当前路由渲染不同页面 --><component :is="currentRouteComponent"></component></main></div>
</template><script>
export default {data() {return {// 根据路由动态加载的组件currentRouteComponent: null,};},watch: {$route(to) {// 根据路由变化动态设置要加载的组件this.loadRouteComponent(to);},},created() {// 初始化时加载当前路由对应的组件this.loadRouteComponent(this.$route);},methods: {async loadRouteComponent(route) {// 根据路由异步加载对应的组件const componentName = route.name || 'Home';const componentModule = await import(`@/views/${componentName}.vue`);this.currentRouteComponent = componentModule.default;},},
};
</script>

在这个例子中,我们使用了 Vue Router 来处理页面切换。Layout 组件中的动态组件通过 :is 属性根据当前路由来动态渲染不同的页面组件。通过 import 异步加载页面组件,实现了懒加载的效果。

在项目中,你需要配置 Vue Router,并在入口文件中引入和使用它。这个例子主要演示了如何在一个多页面应用中,通过动态组件和懒加载来优化渲染机制,实现页面按需加载,提高初始加载速度。

结尾

通过本文,你将深入了解Vue 3渲染机制的方方面面,为你的Vue开发之路增添更多的技术深度。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/160884.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【java】想要限制每次查询的结果集不能超过10000行,该如何实现?

文章目录 前言 前言 对于一些Saas化软件&#xff0c;当某个租户在执行查询SQL时&#xff0c;如果查询条件出现了BUG&#xff0c;导致去查了所有租户的数据&#xff0c;这种情况是非常严重的&#xff0c;此时就需要在架构层面做限制&#xff0c;禁止一些特殊SQL的执行&#xff…

@PropertySource适配通配符加载到Environment的一种方案

PropertySource可将配置文件加载到内存&#xff0c;时间有限说干的&#xff0c;PropertySource注解有4个参数&#xff0c;其中value表示要加载文件的路径&#xff0c;这个参数不支持通配符。还有一个参数PropertySourceFactory是加载配置文件的工厂&#xff0c;这两个参数配合使…

【GUI】-- 13 贪吃蛇小游戏之食物及成绩判断

GUI编程 04 贪吃蛇小游戏 4.4 第四步&#xff1a;食物及成绩判断 首先&#xff0c;添加食物与分数的数据定义&#xff1a; //食物的坐标int foodX;int foodY;Random random new Random();//积分面板数据结构int score;在初始化方法中&#xff0c;添加(画出)食物与分数&…

CSDN最新最全pytest系列——pytest-base-url插件之配置可选的项目系统UR

前言 ①当我们的自动化代码完成之后&#xff0c;通常期望可以在不同的环境进行测试&#xff0c;此时可以将项目系统的URL单独拿出来&#xff0c;并且可以通过pytest.ini配置文件和支持pytest命令行方式执行。 ② pytest-base-url 是一个简单的pytest插件&#xff0c;它通过命…

纽扣电池上架TEMU、亚马逊美国站需要做什么认证?纽扣电池认证标准16CFR1700.15,16CFR1700.20

近日&#xff0c;Temu连发多条卖家弹窗内容均为商品质量事故违规处理通告。其中一条为卖家销售的车载吸尘器发生烧毁、冒烟等情况&#xff0c;产生用户人伤、财损等舆情。经查实是商家偷换关键部件锂电池&#xff0c;导致商品质量下降造成事故。TEMU对于问题车载吸尘器处理结果…

设计循环队列,解决假溢出问题

什么是假溢出&#xff1f; 当我们使用队列这种基本的数据结构时&#xff0c;很容易发现&#xff0c;随着入队和出队操作的不断进行&#xff0c;队列的数据区域不断地偏向队尾方向移动。当我们的队尾指针指向了队列之外的区域时&#xff0c;我们就不能再进行入队操作了&#xff…

单链表在线OJ题二(详解+图解)

1.在一个排序的链表中&#xff0c;存在重复的结点&#xff0c;请删除该链表中重复的结点&#xff0c;重复的结点不保留&#xff0c;返回链表头指针 本题的意思是要删除链表中重复出现的节点&#xff0c;然后返回删除重复节点后的链表。 我们可以直接用一个哨兵位以便于观察链表…

指针变量和地址

A.指针变量和地址 理解了内存和地址的关系&#xff0c;我们再回到C语⾔&#xff0c;在C语⾔中创建变量其实就是向内存申请空间&#xff0c;比如&#xff1a; #include <stdio.h> int main() {int a 10;return 0; } ⽐如&#xff0c;上述的代码就是创建了整型变量a&…

spring-boot-admin-starter-server监控springboot项目

文章目录 场景实现具体操作展示 场景 监控三件套Prometheus、Grafana、Alertmanager 部署起来太复杂,如果公司没有运维而且项目很小就可以使用spring-boot-admin-starter-server替代。这个包使用起来还是很简单的, 下面就实现一个对springCloud项目的监控 实现 参考 项目 具体操…

经典中的经典之字符串

前言&#xff1a;前段时间发烧了&#xff0c;所以耽误了很多事情&#xff0c;一直没有更新&#xff0c;多穿点衣服&#xff0c;感冒不好受。 接下来有时间就会陆续更新一些基础的算法题&#xff0c;题目都很经典&#xff0c;大家可以先尝试着做&#xff0c;再看 解析。 第一…

Windows常用cmd网络命令详解

中午好&#xff0c;我的网工朋友。 上回给你们梳理了一些有趣的cmd命令&#xff0c;很多朋友希望再拓展一下&#xff0c;这不就来了&#xff1f; 今天从windows切入&#xff0c;给你分享一些常用cmd网络命令&#xff0c;如果能熟悉上手&#xff0c;很多功能都可以快速实现&am…

Java Class 类文件格式看这一篇就够了

本文将揭开Java Class文件的神秘面纱&#xff0c;带你了解Class文件的内部结构&#xff0c;并从Class文件结构的视角告诉你&#xff1a; 为什么Java Class字节码文件可以“写一次&#xff0c;遍地跑”&#xff1f;为什么常量池的计数从1开始&#xff0c;而不是和java等绝大多数…

【JVM精讲与GC调优教程(概述)】

如何理解虚拟机(JVM)跨语言的平台 java虚拟机根本不关心运行在其内部的程序到底是使用何种编程语言编写的,他只关心“字节码”文件。 java不是最强大的语言,但是JVN是最强大的虚拟机。 不存在内存溢出? 内存泄露? JAVA = (C++)–; 垃圾回收机制为我们打理了很多繁琐的…

【人工智能入门学习资料福利】

总目录如下&#xff08;部分截取&#xff09;&#xff1a; 百度网盘链接&#xff1a;https://pan.baidu.com/s/1bfDVG-xcPR3f3nfBJXxqQQ?pwdifu6 提取码&#xff1a; ifu6

B站已经部分上线前台实名,如不同意实名,后期账号流量将收影响!

B站部分百万粉丝博主的主页显示账号运营人名字的政策是从10月31日开始的。当天&#xff0c;B站官方发布了《哔哩哔哩关于头部“自媒体”账号前台实名的公告》&#xff0c;表明了其前台实名制的实施计划。 B站部分上线前台实名的过程可以追溯到2021年。当时&#xff0c;中国政府…

SQL语句执行过程

一条 SQL 的执行过程可以大致分为以下几个步骤&#xff1a; 连接器&#xff1a; ○ 客户端与数据库建立连接&#xff0c;并发送 SQL 语句给数据库服务。 ○ 连接器验证客户端的身份和权限&#xff0c;确保用户有足够的权限执行该 SQL 语句。查询缓存&#xff1a; ○ 连接器首先…

基于鹰栖息算法优化概率神经网络PNN的分类预测 - 附代码

基于鹰栖息算法优化概率神经网络PNN的分类预测 - 附代码 文章目录 基于鹰栖息算法优化概率神经网络PNN的分类预测 - 附代码1.PNN网络概述2.变压器故障诊街系统相关背景2.1 模型建立 3.基于鹰栖息优化的PNN网络5.测试结果6.参考文献7.Matlab代码 摘要&#xff1a;针对PNN神经网络…

Motion v5.6.7 苹果电脑上的视频编辑

Motion mac是一款运行在苹果电脑上的视频编辑软件&#xff0c;它能让您自定Final Cut Pro字幕、转场和效果。 它可以在2D或3D空间中创建您自己的精美炫目的动画&#xff0c;同时还能在您工作时提供实时反馈。广色域支持让你的动态图形更显出色光彩。3D文字功能经过优化增强&am…

01背包与完全背包学习总结

背包问题分类见下图 参考学习点击&#xff1a;代码随想录01背包讲解 01背包问题&#xff1a; 核心思路&#xff1a; 1、先遍历物品个数&#xff0c;再遍历背包容量。因为容量最先是最大的&#xff0c;往背包里放物品&#xff0c;所以背包容量在慢慢减少&#xff0c;但背包容量…

上海泗博MODBUS转PROFINET网关TS-180 网关连接LED显示屏应用案例

项目 常州某钢铁公司的轧钢车间为了更清晰地显示当天轧钢系统各环节的工作参数&#xff0c;如轧钢的日期、钢种、吐丝机设备运行情况等&#xff0c;引进了另一家为其定制的LED显示屏。轧钢系统各环节的设备参数通过西门子S7-1500PLC采集后&#xff0c;实时显示在LED显示屏上&am…