【雕爷学编程】MicroPython动手做(10)——零基础学MaixPy之神经网络KPU2

KPU的基础架构
让我们回顾下经典神经网络的基础运算操作:
卷积(Convolution):1x1卷积,3x3卷积,5x5及更高的卷积
批归一化(Batch Normalization)
激活(Activate)
池化(Pooling)
矩阵运算(Matrix Calculate):矩阵乘,加
对于基础的神经网络结构,仅具备1,2,3,4 四种操作;
对于新型网络结构,比如ResNet,在卷积结果后会加一个变量,就需要使用第五种操作,矩阵运算。
对于MAIX的主控芯片K210来说,它内置实现了 卷积,批归一化,激活,池化 这4钟基础操作的硬件加速,但是没有实现一般的矩阵运算,所以在实现的网络结构上有所限制。
对于需要额外操作的网络结构,用户必须在硬件完成基础操作后,手工插入CPU干预的处理层实现,会导致帧数降低,所以建议用户优化自己的网络结构到基础网络形式。
所幸的是,该芯片的第二代将支持通用矩阵计算,并固化更多类型的网络结构。
在KPU中,上述提到的4种基础操作并非是单独的加速模块,而是合成一体的加速模块,有效避免了CPU干预造成的损耗,但也丧失了一些操作上的灵活性。
从standalone sdk/demo 以及 Model Compiler 中分析出 KPU加速模块的原理框图如下,看图即懂。

在这里插入图片描述

#MicroPython动手做(10)——零基础学MaixPy之神经网络KPU
#实验程序之一:运行人脸识别demo(简单演示)
#模型下载地址:http://dl.sipeed.com/MAIX/MaixPy/model/face_model_at_0x300000.kfpkg
下载后模型文件夹内有二个文件

在这里插入图片描述
在这里插入图片描述

打开kflash_gui
使用kfpkg将 二个模型文件 与 maixpy 固件打包下载到 flash

在这里插入图片描述
打包kfpkg时出错,好像是文件地址范围不同…

在这里插入图片描述

尝试多次一直不行,两者不兼容。后来干脆不打包了,只烧录模型文件kfpkg(原来烧录过MaixPy固件V0.4.0),没想到可以了,这下明白了,固件和模型分开烧录也行。

在这里插入图片描述

#MicroPython动手做(10)——零基础学MaixPy之神经网络KPU
#实验程序之一:运行人脸识别demo(简单演示)
#模型下载地址:http://dl.sipeed.com/MAIX/MaixPy … l_at_0x300000.kfpkg

#MicroPython动手做(10)——零基础学MaixPy之神经网络KPU
#实验程序之一:运行人脸识别demo(简单演示)
#模型下载地址:http://dl.sipeed.com/MAIX/MaixPy ... l_at_0x300000.kfpkgimport sensor
import image
import lcd
import KPU as kpulcd.init()
sensor.reset()
sensor.set_pixformat(sensor.RGB565)
sensor.set_framesize(sensor.QVGA)
sensor.run(1)
task = kpu.load(0x300000) #使用kfpkg将 kmodel 与 maixpy 固件打包下载到 flash
anchor = (1.889, 2.5245, 2.9465, 3.94056, 3.99987, 5.3658, 5.155437, 6.92275, 6.718375, 9.01025)
a = kpu.init_yolo2(task, 0.5, 0.3, 5, anchor)
while(True):img = sensor.snapshot()code = kpu.run_yolo2(task, img)if code:for i in code:print(i)a = img.draw_rectangle(i.rect())a = lcd.display(img)
a = kpu.deinit(task)

在这里插入图片描述
串口输出了大量数据

在这里插入图片描述

{“x”:0, “y”:31, “w”:107, “h”:145, “value”:0.611305, “classid”:0, “index”:0, “objnum”:1}
{“x”:0, “y”:31, “w”:107, “h”:145, “value”:0.500000, “classid”:0, “index”:0, “objnum”:1}
{“x”:1, “y”:31, “w”:107, “h”:144, “value”:0.500000, “classid”:0, “index”:0, “objnum”:1}
{“x”:0, “y”:31, “w”:107, “h”:145, “value”:0.556360, “classid”:0, “index”:0, “objnum”:1}
{“x”:13, “y”:34, “w”:83, “h”:139, “value”:0.556360, “classid”:0, “index”:0, “objnum”:1}
{“x”:0, “y”:31, “w”:107, “h”:145, “value”:0.500000, “classid”:0, “index”:0, “objnum”:1}
{“x”:0, “y”:31, “w”:107, “h”:145, “value”:0.500000, “classid”:0, “index”:0, “objnum”:1}
{“x”:0, “y”:31, “w”:107, “h”:145, “value”:0.556360, “classid”:0, “index”:0, “objnum”:1}
{“x”:0, “y”:31, “w”:107, “h”:145, “value”:0.500000, “classid”:0, “index”:0, “objnum”:1}
{“x”:15, “y”:36, “w”:83, “h”:111, “value”:0.556360, “classid”:0, “index”:0, “objnum”:1}
{“x”:13, “y”:33, “w”:83, “h”:139, “value”:0.556360, “classid”:0, “index”:0, “objnum”:1}
{“x”:14, “y”:47, “w”:83, “h”:111, “value”:0.500000, “classid”:0, “index”:0, “objnum”:1}
{“x”:0, “y”:31, “w”:107, “h”:144, “value”:0.556360, “classid”:0, “index”:0, “objnum”:1}
{“x”:13, “y”:32, “w”:83, “h”:139, “value”:0.500000, “classid”:0, “index”:0, “objnum”:1}
{“x”:14, “y”:32, “w”:83, “h”:139, “value”:0.611305, “classid”:0, “index”:0, “objnum”:1}
{“x”:0, “y”:31, “w”:107, “h”:144, “value”:0.556360, “classid”:0, “index”:0, “objnum”:1}

KPU是通用的神经网络处理器,它可以在低功耗的情况下实现卷积神经网络计算,时时获取被检测目标的大小、坐标和种类,对人脸或者物体进行检测和分类。KPU模块方法:

  1. 加载模型
    从flash或者文件系统中加载模型
    import KPU as kpu
    task = kpu.load(offset or file_path)

参数
offtset: 模型在 flash 中的偏移大小,如 0xd00000 表示模型烧录在13M起始的地方
file_path: 模型在文件系统中为文件名, 如 “/sd/xxx.kmodel”

返回
kpu_net: kpu 网络对象

  1. 初始化yolo2网络
    为yolo2网络模型传入初始化参数
    import KPU as kpu
    task = kpu.load(offset or file_path)
    anchor = (1.889, 2.5245, 2.9465, 3.94056, 3.99987, 5.3658, 5.155437, 6.92275, 6.718375, 9.01025)
    kpu.init_yolo2(task, 0.5, 0.3, 5, anchor)

参数
kpu_net: kpu 网络对象
threshold: 概率阈值
nms_value: box_iou 门限
anchor_num: 锚点数
anchor: 锚点参数与模型参数一致

  1. 反初始化
    import KPU as kpu
    task = kpu.load(offset or file_path)
    kpu.deinit(task)

参数
kpu_net: kpu_load 返回的 kpu_net 对象

  1. 运行yolo2网络
    import KPU as kpu
    import image
    task = kpu.load(offset or file_path)
    anchor = (1.889, 2.5245, 2.9465, 3.94056, 3.99987, 5.3658, 5.155437, 6.92275, 6.718375, 9.01025)
    kpu.init_yolo2(task, 0.5, 0.3, 5, anchor)
    img = image.Image()
    kpu.run_yolo2(task, img)

参数
kpu_net: kpu_load 返回的 kpu_net 对象
image_t:从 sensor 采集到的图像

返回
list: kpu_yolo2_find 的列表

  1. 网络前向运算(forward)
    计算已加载的网络模型到指定层数,输出目标层的特征图
    import KPU as kpu
    task = kpu.load(offset or file_path)
    ……
    fmap=kpu.forward(task,img,3)

参数
kpu_net: kpu_net 对象
image_t: 从 sensor 采集到的图像
int: 指定计算到网络的第几层

返回
fmap: 特征图对象,内含当前层所有通道的特征图

  1. fmap 特征图
    取特征图的指定通道数据到image对象
    img=kpu.fmap(fmap,1)

参数
fmap: 特征图 对象
int: 指定特征图的通道号】

返回
img_t: 特征图对应通道生成的灰度图

  1. fmap_free 释放特征图
    释放特征图对象
    kpu.fmap_free(fmap)

参数
fmap: 特征图 对象

返回

  1. netinfo
    获取模型的网络结构信息
    info=kpu.netinfo(task)
    layer0=info[0]

参数
kpu_net: kpu_net 对象

返回
netinfo list:所有层的信息list, 包含信息为:
index:当前层在网络中的层数
wi:输入宽度
hi:输入高度
wo:输出宽度
ho:输出高度
chi:输入通道数
cho:输出通道数
dw:是否为depth wise layer
kernel_type:卷积核类型,0为1x1, 1为3x3
pool_type:池化类型,0不池化; 1:2x2 max pooling; 2:…
para_size:当前层的卷积参数字节数

KPU寄存器配置说明
芯片厂家没有给出寄存器手册,我们从kpu.c, kpu.h, Model Compiler中分析各寄存器定义。KPU的寄存器配置写在 kpu_layer_argument_t 结构体中,我们取standalone demo中的kpu demo中的gencode.c来分析.(https://github.com/kendryte/kend … pu/gencode_output.c)

//层参数列表,共16层kpu_layer_argument_t la[] __attribute__((aligned(128))) = {
//0{
.kernel_offset.data = {.coef_row_offset = 0,                //固定为0.coef_column_offset = 0        //固定为0
},
.image_addr.data = {                //图像输入输出地址,一个在前,一个在后,下一层运算的时候翻过来,可以避免拷贝工作。.image_dst_addr = (uint64_t)0x6980,        //图像输出地址,int((0 if idx & 1 else (img_ram_size - img_output_size)) / 64).image_src_addr = (uint64_t)0x0                //图像加载地址
},
.kernel_calc_type_cfg.data = {.load_act = 1,                        //使能激活函数,必须使能(硬件设计如此),不使能则输出全为0.active_addr = 0,                        //激活参数加载首地址,在kpu_task_init里初始化为激活折线表.row_switch_addr = 0x5,        //图像宽占用的单元数,一个单元64Byte.  ceil(width/64)=ceil(320/64)=5.channel_switch_addr = 0x4b0,                        //单通道占用的单元数.  row_switch_addr*height=5*240=1200=0x4b0.coef_size = 0,                        //固定为0.coef_group = 1                        //一次可以计算的组数,因为一个单元64字节,//所以宽度>32,设置为1;宽度17~32,设置为2;宽度<=16,设置为4
},
.interrupt_enabe.data = {.depth_wise_layer = 0,        //常规卷积层,设置为0.ram_flag = 0,                        //固定为0.int_en = 0,                                //失能中断.full_add = 0                                //固定为0
},
.dma_parameter.data = {        //DMA传输参数.dma_total_byte = 307199,                //该层输出16通道,即 19200*16=308200.send_data_out = 0,                        //使能输出数据.channel_byte_num = 19199                //输出单通道的字节数,因为后面是2x2 pooling, 所以大小为160*120=19200
},
.conv_value.data = {                //卷积参数,y = (x*arg_x)>>shr_x.arg_x = 0x809179,                //24bit        乘法参数.arg_w = 0x0,.shr_x = 8,                                //4bit        移位参数.shr_w = 0
},
.conv_value2.data = {                //arg_add = kernel_size * kernel_size * bw_div_sw * bx_div_sx =3x3x?x?.arg_add = 0
},
.write_back_cfg.data = {        //写回配置.wb_row_switch_addr = 0x3,                //ceil(160/64)=3.wb_channel_switch_addr = 0x168,        //120*3=360=0x168.wb_group = 1                                                //输入行宽>32,设置为1
},
.image_size.data = {        //输入320*240,输出160*120.o_col_high = 0x77,.i_col_high = 0xef,.i_row_wid = 0x13f,.o_row_wid = 0x9f
},
.kernel_pool_type_cfg.data = {.bypass_conv = 0,                //硬件不能跳过卷积,固定为0.pad_value = 0x0,                //边界填充0.load_para = 1,                //硬件不能跳过归一化,固定为1.pad_type = 0,                //使用填充值.kernel_type = 1,                //3x3设置为1, 1x1设置为0.pool_type = 1,                //池化类型,步长为2的2x2 max pooling.dma_burst_size = 15,        //dma突发传送大小,16字节;脚本中固定为16.bwsx_base_addr = 0,        //批归一化首地址,在kpu_task_init中初始化.first_stride = 0                //图像高度不超过255;图像高度最大为512},
.image_channel_num.data = {.o_ch_num_coef = 0xf,        //一次性参数加载可计算的通道数,16通道。4K/单通道卷积核数//o_ch_num_coef = math.floor(weight_buffer_size / o_ch_weights_size_pad)       .i_ch_num = 0x2,                //输入通道,3通道 RGB.o_ch_num = 0xf                //输出通道,16通道
},
.kernel_load_cfg.data = {.load_time = 0,                //卷积加载次数,不超过72KB,只加载一次.para_size = 864,                //卷积参数大小864字节,864=3(RGB)*9(3x3)*2*16.para_start_addr = 0,        //起始地址.load_coor = 1                //允许加载卷积参数
}
},//0层参数结束……
};上表中还有些结构体内容没有填充,是在KPU初始化函数中填充:```kpu_task_t* kpu_task_init(kpu_task_t* task){
la[0].kernel_pool_type_cfg.data.bwsx_base_addr = (uint64_t)&bwsx_base_addr_0;        //初始化批归一化表
la[0].kernel_calc_type_cfg.data.active_addr = (uint64_t)&active_addr_0;                //初始化激活表
la[0].kernel_load_cfg.data.para_start_addr = (uint64_t)¶_start_addr_0;         //初始化参数加载
……        //16层参数,逐层计算
task->layers = la;
task->layers_length = sizeof(la)/sizeof(la[0]);        //16层
task->eight_bit_mode = 0;                                        //16bit模式
task->output_scale = 0.12349300010531557;        //输出的缩放,偏置
task->output_bias = -13.528212547302246;
return task;
}```

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/15944.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

无人机调试笔记——常见参数

无人机的PID调试以及速度相关参数 1、Multicopter Position Control主要是用来设置无人机的各种速度和位置参数。调试顺序是先调试内环PID&#xff0c;也就是无人机的速度闭环控制&#xff0c;确认没有问题后再进行外环位置控制&#xff0c;也就是定点模式控制。 2、调试的时…

【分享帖】LCD的MCU接口和SPI接口详解

LCD&#xff08;Liquid Crystal Display&#xff09;液晶屏&#xff0c;作为电子产品的重要组成部分&#xff0c;是终端用户与电子产品交互的重要载体。现在市场上的LCD&#xff0c;按照尺寸、功能、接口、用途等分为很多种&#xff0c;本文主要介绍如下两种LCD物理接口&#x…

配置 gitlab https 访问

文章目录 1. 备份2. 生成SSL证书3. 配置文件4. 重启5. 访问 1. 备份 docker exec -ti gitlab-ce gitlab-rake gitlab:backup:create2. 生成SSL证书 yum install openssl openssl-devel -y mkdir /data/gitlab/config/ssl ; cd /data/gitlab/config/ssl### 生成证书 openssl…

思维导图在线生成,新手必备!

思维导图是一个很好的学习和工作的方式&#xff0c;可以解决我们工作中的很多困难的问题&#xff0c;但是现在随着思维导图学习方法的推广&#xff0c;市面上的导图软件层出不穷&#xff0c;电子化的思维导图软件极大的方便了我们的工作和生活&#xff0c;下面我们就一起来盘点…

Hudi Flink SQL源码调试学习(1)

前言 本着学习hudi-flink源码的目的&#xff0c;利用之前总结的文章Hudi Flink SQL代码示例及本地调试中的代码进行调试,记录调试学习过程中主要的步骤及对应源码片段。 版本 Flink 1.15.4Hudi 0.13.0 目标 在文章Hudi Flink SQL代码示例及本地调试中提到&#xff1a;我们…

CK-00靶机详解

CK-00靶机详解 靶场下载地址&#xff1a;https://download.vulnhub.com/ck/CK-00.zip 这个靶场扫描到ip打开后发现主页面css是有问题的&#xff0c;一般这种情况就是没有配置域名解析。 我们网站主页右击查看源代码&#xff0c;发现一个域名。 把域名添加到我们hosts文件中。…

Mac 终端快捷键设置:如何给 Mac 中的 Terminal 设置 Ctrl+Alt+T 快捷键快速启动

Mac 电脑中正常是没有直接打开终端命令行的快捷键指令的&#xff0c;但可以通过 commandspace 打开聚焦搜索&#xff0c;然后输入 ter 或者 terminal 全拼打开。但习惯了 linux 的同学会觉得这个操作很别扭。于是我们希望能通过键盘按键直接打开。 操作流程如下&#xff1a; 1…

MyBatis小记_one

目录 什么是框架 1.框架的概述 2.框架要解决的问题 3. 软件开发的分层重要性 4.分层开发的常见框架 MyBatis 框架概述 JDBC 编程的回顾 JDBC 问题分析 MyBatis 框架快速入门 1.官网下载MyBatis框架jar包 2.搭建MyBatis 开发环境 3. 编写持久层接口的映射文件 IUserD…

HTML笔记(1)

介绍 浏览器中内置了HTML的解析引擎&#xff0c;通过解析标记语言来展现网页&#xff1b;HTML标签都是预定义好的&#xff1b;Java工程师&#xff1a;后台代码的编写&#xff0c;和数据库打交道&#xff0c;把数据给网页前端的工程师&#xff1b;网页前端工程师&#xff1a;写H…

C++信号量与共享内存实现进程间通信

关于信号量和共享内存的相关知识可参考下面链接&#xff1a; 进程间通信方式介绍_夜雨听萧瑟的博客-CSDN博客 C 创建共享内存_c共享内存_夜雨听萧瑟的博客-CSDN博客 信号量SytemV与Posix信号量的介绍与用法_夜雨听萧瑟的博客-CSDN博客 直接上代码&#xff0c;代码如下&#…

记一次Apache HTTP Client问题排查

现象 通过日志查看&#xff0c;存在两种异常情况。第一种&#xff1a;开始的时候HTTP请求会报超时异常。 762663363 [2023-07-21 06:04:25] [executor-64] ERROR - com.xxl.CucmTool - CucmTool|sendRisPortSoap error,url:https://xxxxxx/realtimeservice/services/RisPort o…

【C语言】通讯录2.0 (动态增长版)

前言 通讯录是一种记录联系人信息的工具&#xff0c;包括姓名、电话号码、电子邮件地址、住址等。 文章的一二三章均于上一篇相同&#xff0c;可以直接看第四章改造内容。 此通讯录是基于通讯录1.0&#xff08;静态版&#xff09;的基础上进行改进&#xff0c;请先看系列文字第…

自动化测试:让软件测试更高效更愉快!

谈谈那些实习测试工程师应该掌握的基础知识&#xff08;一&#xff09;_什么时候才能变强的博客-CSDN博客https://blog.csdn.net/qq_17496235/article/details/131839453谈谈那些实习测试工程师应该掌握的基础知识&#xff08;二&#xff09;_什么时候才能变强的博客-CSDN博客h…

css 动画之旋转视差

序&#xff1a;网上看到的一个例子&#xff0c;做一下 效果图&#xff1a; 代码&#xff1a; <style>.content{width: 300px;height: 300px;margin: 139px auto;display: grid;grid-template-columns: repeat(3,1fr);grid-template-rows: repeat(3,1fr);grid-template:…

Python 进阶(六):文件读写(I/O)

❤️ 博客主页&#xff1a;水滴技术 &#x1f338; 订阅专栏&#xff1a;Python 入门核心技术 &#x1f680; 支持水滴&#xff1a;点赞&#x1f44d; 收藏⭐ 留言&#x1f4ac; 文章目录 1. 打开文件2. 读取文件2.1 逐行读取文件2.2 读取所有行 3. 写入文件3.1 向文件中写入…

从0到1开发go-tcp框架【1-搭建server、封装连接与业务绑定、实现基础Router、抽取全局配置文件】

从0到1开发go-tcp框架【1-搭建server、封装连接与业务绑定、实现基础Router】 本期主要完成对Server的搭建、封装连接与业务绑定、实现基础Router&#xff08;处理业务的部分&#xff09;、抽取框架的全局配置文件 从配置文件中读取数据&#xff08;服务器监听端口、监听IP等&a…

汇编语言基础知识

目录 前言&#xff1a; 汇编语言的产生 汇编语言的组成 内存 指令和数据 cpu对内存的读写操作 地址总线 数据总线 控制总线 内存地址空间 前言&#xff1a; 汇编语言是直接在硬件之上工作的 编程语言&#xff0c;我们首先了解硬件系统的机构&#xff0c;才能有效地应用…

C/C++多线程操作

文章目录 多线程C创建线程join 和detachthis_thread线程操作锁lock_guardunique_lock 条件变量 condition_variablewaitwaitfor C语言线程创建线程同步 参考 多线程 传统的C&#xff08;C11标准之前&#xff09;中并没有引入线程这个概念&#xff0c;在C11出来之前&#xff0c…

【编译】gcc make cmake Makefile CMakeList.txt 区别

文章目录 一 关系二 gcc2.1 编译过程2.2 编译参数2.3 静态库和动态库1 后缀名2 联系与区别 2.4 GDB 调试器1 常用命令 三 make、makefile四 cmake、cmakelist4.1 语法特性4.2 重要命令4.2 重要变量4.3 编译流程4.4 两种构建方式 五 Vscode5.0 常用快捷键5.1 界面5.2 插件5.3 .v…

STM32 SPI学习

SPI 串行外设设备接口&#xff08;Serial Peripheral Interface&#xff09;&#xff0c;是一种高速的&#xff0c;全双工&#xff0c;同步的通信总线。 SCK时钟信号由主机发出。 SPI接口主要应用在存储芯片。 SPI相关引脚&#xff1a;MOSI&#xff08;输出数据线&#xff…