【C语言】数据结构——栈和队列实例探究

💗个人主页💗
⭐个人专栏——数据结构学习⭐
💫点击关注🤩一起学习C语言💯💫

目录

  • 导读:
  • 一、 栈
    • 1. 栈的概念及结构
    • 2. 栈的实现
    • 3. 实现代码
      • 3.1 定义结构体
      • 3.2 初始化栈
      • 3.3 销毁栈
      • 3.4 入栈
      • 3.5 出栈
      • 3.6 获取栈顶元素
      • 3.7 检测栈是否为空
      • 3.8 获取栈中有效元素个数
    • 4. 代码整理
      • 4.1 **Stack.h**
      • 4.2 Stack.c
      • 4.3 study.c
  • 二、队列
    • 1. 队列的概念及结构
    • 2. 队列的实现
    • 3. 实现代码
      • 3.1 定义结构体
      • 3.2 初始化队列
      • 3.3 销毁队列
      • 3.4 队尾入队列
      • 3.5 队头出队列
      • 3. 6 获取队列头部元素
      • 3.7 获取队列队尾元素
      • 3.8 检测队列是否为空
      • 3.9 获取队列中有效元素个数
    • 4. 代码整理
      • 4.1 **Queue.h**
      • 4.2 Queue.c
      • 4.3 study.c

导读:

我们在前面学习了单链表和顺序表,今天我们来学习栈和队列。
栈和队列相对于单链表和顺序表来说是较为简单的,之后我们再深入学习双链表。关注博主或是订阅专栏,掌握第一消息。

一、 栈

1. 栈的概念及结构

栈(Stack)是一种只能在一端进行插入和删除操作的线性数据结构,该端被称为栈顶(Top),另一端被称为栈底(Bottom)。
栈的特点是后进先出(Last In First Out, LIFO),即最后放入栈中的元素最先被弹出。栈中的元素可以是任意类型,但栈顶永远只能是一个元素。

压栈:栈的插入操作叫做进栈/压栈/入栈,入数据在栈顶。
出栈:栈的删除操作叫做出栈。出数据也在栈顶。

在这里插入图片描述
在这里插入图片描述

2. 栈的实现

栈可以用数组或链表来实现,常见应用场景包括函数调用、表达式求值、括号匹配、逆序输出等。

相对而言数组的结构实现更优一些。因为数组在尾上插入数据的 代价比较小。
在这里插入图片描述

其基本操作包括:

push(x): 将元素x压入栈顶。
pop(): 弹出栈顶元素并返回其值。
top(): 返回栈顶元素的值,但不弹出。
empty():判断栈是否为空。

3. 实现代码

我们需要创建两个 C文件: study.c 和 Stack.c,以及一个 头文件: Stack.h。

头文件来声明函数,一个C文件来定义函数,另外一个C文件来用于主函数main()进行测试。

3.1 定义结构体

typedef是类型定义的意思。typedef struct 是为了使用这个结构体方便。

若struct Stack {}这样来定义结构体的话。在申请Stack 的变量时,需要这样写,struct Stack n;
若用typedef,可以这样写,typedef struct Stack{}ST; 。在申请变量时就可以这样写,ST n;
区别就在于使用时,是否可以省去struct这个关键字。

Stack.h

typedef struct Stack
{STDataType* a;int top;		//标识栈顶的位置int capacity;
}ST;

3.2 初始化栈

Stack.h 声明函数

// 初始化栈 
void STInit(ST* pst);

Stack.c 定义函数

void STInit(ST* pst)
{assert(pst);pst->a = NULL;pst->top = 0;pst->capacity = 0;
}

3.3 销毁栈

动态内存空间开辟,使用完之后需要进行销毁。
Stack.h 声明函数

// 销毁
void STDestroy(ST* pst);

Stack.c 定义函数

void STDestroy(ST* pst)
{assert(pst);free(pst->a);pst->a = NULL;pst->top = 0;
}

3.4 入栈

我们在顺序表和单向链表里,都另定义一个函数来进行空间的开辟,这样我们在其它的函数中有开辟空间的需要只用调用即可,而无需再去写一次开辟空间的代码。但是在栈中我们只有在入栈的函数中需要进行空间的开辟,所有不用再单独写一个函数。
Stack.h 声明函数

// 入栈 
void STPush(ST* pst, STDataType x);

Stack.c 定义函数


void STPush(ST* pst, STDataType x)
{assert(pst);// 检查空间,如果满了,进行增容if (pst->top == pst->capacity){int newcapacity = pst->capacity == 0 ? 4 : pst->capacity * 2;STDataType* tmp = (STDataType*)realloc(pst->a, sizeof(STDataType) * newcapacity);if (tmp == NULL){perror("realloc fail");return;}//如果开辟成功则重新赋给原来的数组指针pst->a = tmp;pst->capacity = newcapacity;}//栈顶从0开始,可以作为数组的下标来进行插入数据pst->a[pst->top] = x;pst->top++;
}

3.5 出栈

后进先出原则,最后进来的数据先出。
Stack.h 声明函数

// 出栈 
void STPop(ST* pst);

Stack.c 定义函数

// 出栈 
void STPop(ST* pst)
{assert(pst);//top大于0,栈里面有数据才能删除数据assert(pst->top > 0);//直接让top--,不让访问即可pst->top--;
}

在这里插入图片描述

3.6 获取栈顶元素

栈并不能像打印数组那样把数据全部打印出来,只能获取到栈顶的元素,想要获取其它数据就只能先把其它的数据给删除,也就是出栈。
Stack.h 声明函数

// 获取栈顶元素 
STDataType STTop(ST* pst);

Stack.c 定义函数

// 获取栈顶元素 
STDataType STTop(ST* pst)
{assert(pst);assert(pst->top > 0);//top-1即是栈顶元素return pst->a[pst->top - 1];
}

3.7 检测栈是否为空

Stack.h 声明函数

// 检测栈是否为空,如果为空返回true,如果不为空返回false 
bool STEmpty(ST* pst);

Stack.c 定义函数

// 检测栈是否为空,如果为空返回true,如果不为空返回false 
bool STEmpty(ST* pst)
{assert(pst);//如果表达式成立则为真return pst->top == 0;
}

3.8 获取栈中有效元素个数

Stack.h 声明函数

// 获取栈中有效元素个数 
int STSize(ST* pst);

Stack.c 定义函数

//获取栈中有效元素个数
int STSize(ST* pst)
{assert(pst);return pst->top;
}

4. 代码整理

4.1 Stack.h

#pragma once
#include <stdio.h>
#include <assert.h>
#include <stdlib.h>
#include <stdbool.h>
typedef int STDataType;typedef struct Stack
{STDataType* a;int top;		//标识栈顶的位置int capacity;
}ST;// 初始化栈 
void STInit(ST* pst);// 销毁
void STDestroy(ST* pst);// 入栈 
void STPush(ST* pst, STDataType x);// 出栈 
void STPop(ST* pst);// 获取栈顶元素 
STDataType STTop(ST* pst);// 检测栈是否为空,如果为空返回true,如果不为空返回false 
bool STEmpty(ST* pst);// 获取栈中有效元素个数 
int STSize(ST* pst);

4.2 Stack.c

#include "Stack.h"//初始化栈
void STInit(ST* pst)
{assert(pst);pst->a = NULL;pst->top = 0;pst->capacity = 0;
}// 销毁栈
void STDestroy(ST* pst)
{assert(pst);free(pst->a);pst->a = NULL;pst->top = 0;
}// 入栈 
void STPush(ST* pst, STDataType x)
{assert(pst);// 检查空间,如果满了,进行增容if (pst->top == pst->capacity){int newcapacity = pst->capacity == 0 ? 4 : pst->capacity * 2;STDataType* tmp = (STDataType*)realloc(pst->a, sizeof(STDataType) * newcapacity);if (tmp == NULL){perror("realloc fail");return;}//如果开辟成功则重新赋给原来的数组指针pst->a = tmp;pst->capacity = newcapacity;}//栈顶从0开始,可以作为数组的下标来进行插入数据pst->a[pst->top] = x;pst->top++;
}// 出栈 
void STPop(ST* pst)
{assert(pst);//top大于0,栈里面有数据才能删除数据assert(pst->top > 0);//直接让top--,有效数据减一即可pst->top--;
}// 获取栈顶元素 
STDataType STTop(ST* pst)
{assert(pst);assert(pst->top > 0);//top-1即是栈顶元素return pst->a[pst->top - 1];
}// 检测栈是否为空,如果为空返回true,如果不为空返回false 
bool STEmpty(ST* pst)
{assert(pst);//如果表达式成立则为真return pst->top == 0;
}//获取栈中有效元素个数
int STSize(ST* pst)
{assert(pst);return pst->top;
}

4.3 study.c

#include "Stack.h"void TestST1()
{ST s;STInit(&s);STPush(&s, 1);STPush(&s, 2);STPush(&s, 3);STPush(&s, 4);STPush(&s, 5);printf("%d\n", STTop(&s));//一     对   多//入栈顺序 -- 出栈顺序while (!STEmpty(&s)){printf("%d ", STTop(&s));STPop(&s);}printf("\n");STDestroy(&s);
}
int main()
{TestST1();return 0;
}

二、队列

1. 队列的概念及结构

队列是一种线性的数据结构,它可以存储一系列数据,其中第一个添加的数据会被第一个删除,也就是先进先出(FIFO)的原则。

只允许在一端进行插入数据操作,在另一端进行删除数据操作的特殊线性表,队列具有先进先出
FIFO(First In First Out) 入队列:进行插入操作的一端称为队尾 出队列:进行删除操作的一端称为队头

2. 队列的实现

队列也可以数组和链表的结构实现,使用链表的结构实现更优一些,因为如果使用数组的结构,出队列在数组头上出数据,效率会比较低。

队列通常有两个指针,一个是front指针,指向队列的第一个元素,另一个是rear指针,指向队列的最后一个元素。当一个新元素进入队列时,它被插入到rear指针所指向的位置,当一个元素从队列中删除时,它会从front指针所指向的位置被删除。

在这里插入图片描述

3. 实现代码

我们需要创建两个 C文件: study.c 和 Queue.c,以及一个 头文件: Queue.h。

头文件来声明函数,一个C文件来定义函数,另外一个C文件来用于主函数main()进行测试。

3.1 定义结构体

定义了一个链式队列的数据结构。
包含了两个结构体:

  1. QNode结构体表示队列中的一个节点,包含一个整数数据成员val和指向下一个节点的指针next。

  2. Queue结构体表示一个队列,包含指向队头和队尾节点的指针phead和ptail,以及队列的大小size。

这个队列是通过链式结构实现的,即每个节点都包含一个指向下一个节点的指针。队列的头指针phead指向队列的第一个节点,而队列的尾指针ptail指向队列的最后一个节点。
链式队列的优点是可以动态地增加和减少队列的大小,而不需要像顺序队列那样预留一定的空间。缺点是每个节点都需要额外的指针空间来指向下一个节点,因此相对于顺序队列会占用更多的存储空间。

Queue.h

// 链式结构:表示队列 
typedef int QDataType;
typedef struct QueueNode
{QDataType val;struct QueueNode* next;
}QNode;// 队列的结构 
typedef struct Queue
{QNode* phead;QNode* ptail;int size;
}Queue;

3.2 初始化队列

Queue.h

// 初始化队列 
void QueueInit(Queue* pq);

Queue.c

void QueueInit(Queue* pq)
{pq->phead = NULL;pq->ptail = NULL;pq->size = 0;
}

3.3 销毁队列

Queue.h

// 销毁队列 
void QueueDestroy(Queue* pq);

Queue.c

void QueueDestroy(Queue* pq)
{assert(pq);QNode* cur = pq->phead->next;while (cur){free(pq->phead);pq->phead = cur;cur = cur->next;}cur = NULL;pq->phead = NULL;pq->ptail = NULL;pq->size = 0;
}

3.4 队尾入队列

Queue.h

// 队尾入队列 
void QueuePush(Queue* pq, QDataType x);

Queue.c

void QueuePush(Queue* pq, QDataType x)
{//开辟新空间QNode* newnode = (QNode*)malloc(sizeof(QNode));if (newnode == NULL){perror("malloc fail");return;}newnode->val = x;newnode->next = NULL;if (pq->ptail == NULL){pq->phead = pq->ptail = newnode;}else{pq->ptail->next = newnode;pq->ptail = newnode;}pq->size++;
}

3.5 队头出队列

Queue.h

// 队头出队列
void QueuePop(Queue* pq);

Queue.c

void QueuePop(Queue* pq)
{assert(pq);assert(pq->phead);QNode* tmp = pq->phead;pq->phead = pq->phead->next;free(tmp);tmp = NULL;if (pq->phead == NULL){pq->ptail = NULL;}pq->size--;
}

3. 6 获取队列头部元素

Queue.h

// 获取队列头部元素 
QDataType QueueFront(Queue* pq);

Queue.c

QDataType QueueFront(Queue* pq)
{assert(pq);assert(pq->phead);return pq->phead->val;
}

3.7 获取队列队尾元素

Queue.h

// 获取队列队尾元素
QDataType QueueBack(Queue* pq);

Queue.c

QDataType QueueBack(Queue* pq)
{assert(pq);assert(pq->ptail);return pq->ptail->val;
}

3.8 检测队列是否为空

Queue.h

// 检测队列是否为空,如果为空返回true,如果非空返回false 
bool QueueEmpty(Queue* pq);

Queue.c

bool QueueEmpty(Queue* pq)
{assert(pq);return pq->size == 0;
}

3.9 获取队列中有效元素个数

Queue.h

// 获取队列中有效元素个数 
int QueueSize(Queue* pq);

Queue.c

int QueueSize(Queue* pq)
{assert(pq);return pq->size;
}

4. 代码整理

4.1 Queue.h

#pragma once
#include <stdio.h>
#include <assert.h>
#include <stdlib.h>
#include <stdbool.h>// 链式结构:表示队列 
typedef int QDataType;
typedef struct QueueNode
{QDataType val;struct QueueNode* next;
}QNode;// 队列的结构 
typedef struct Queue
{QNode* phead;QNode* ptail;int size;
}Queue;// 初始化队列 
void QueueInit(Queue* pq);// 销毁队列 
void QueueDestroy(Queue* pq);// 队尾入队列 
void QueuePush(Queue* pq, QDataType x);// 队头出队列
void QueuePop(Queue* pq);// 获取队列头部元素 
QDataType QueueFront(Queue* pq);// 获取队列队尾元素
QDataType QueueBack(Queue* pq);// 检测队列是否为空,如果为空返回true,如果非空返回false 
bool QueueEmpty(Queue* pq);// 获取队列中有效元素个数 
int QueueSize(Queue* pq);

4.2 Queue.c

#include "Queue.h"// 初始化队列 
void QueueInit(Queue* pq)
{pq->phead = NULL;pq->ptail = NULL;pq->size = 0;
}// 销毁队列 
void QueueDestroy(Queue* pq)
{assert(pq);QNode* cur = pq->phead->next;while (cur){free(pq->phead);pq->phead = cur;cur = cur->next;}cur = NULL;pq->phead = NULL;pq->ptail = NULL;pq->size = 0;
}// 队尾入队列 
void QueuePush(Queue* pq, QDataType x)
{QNode* newnode = (QNode*)malloc(sizeof(QNode));if (newnode == NULL){perror("malloc fail");return;}newnode->val = x;newnode->next = NULL;if (pq->ptail == NULL){pq->phead = pq->ptail = newnode;}else{pq->ptail->next = newnode;pq->ptail = newnode;}pq->size++;
}// 队头出队列
void QueuePop(Queue* pq)
{assert(pq);assert(pq->phead);QNode* tmp = pq->phead;pq->phead = pq->phead->next;free(tmp);tmp = NULL;if (pq->phead == NULL){pq->ptail = NULL;}pq->size--;
}// 获取队列头部元素
QDataType QueueFront(Queue* pq)
{assert(pq);assert(pq->phead);return pq->phead->val;
}// 获取队列队尾元素
QDataType QueueBack(Queue* pq)
{assert(pq);assert(pq->ptail);return pq->ptail->val;
}// 检测队列是否为空,如果为空返回true,如果非空返回false 
bool QueueEmpty(Queue* pq)
{assert(pq);return pq->size == 0;
}// 获取队列中有效元素个数 
int QueueSize(Queue* pq)
{assert(pq);return pq->size;
}

4.3 study.c

#include "Queue.h"void TestQ1()
{Queue s;QueueInit(&s);QueuePush(&s, 1);QueuePush(&s, 2);QueuePush(&s, 3);QueuePush(&s, 4);QueuePush(&s, 5);printf("%d ", QueueFront(&s));printf("%d ", QueueBack(&s));printf("%d\n", QueueSize(&s));QueuePop(&s);QueuePop(&s);printf("%d ", QueueFront(&s));printf("%d\n", QueueSize(&s));if (!QueueEmpty(&s)){QueuePop(&s);printf("%d ", QueueFront(&s));printf("%d\n", QueueSize(&s));}QueueDestroy(&s);printf("%d\n", QueueSize(&s));}
int main()
{TestQ1();return 0;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/157647.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Java 进阶篇】深入理解 Jackson:Java 对象转 JSON 的艺术

嗨&#xff0c;亲爱的小白们&#xff01;欢迎来到这篇关于 Jackson JSON 解析器中 Java 对象转 JSON 的详细解析指南。JSON&#xff08;JavaScript Object Notation&#xff09;是一种轻量级的数据交换格式&#xff0c;而 Jackson 作为一个强大的 JSON 解析库&#xff0c;能够帮…

基于SVM的车牌识别算法

基于SVM的车牌识别系统&#xff08;Python代码实现&#xff09; 车牌识别系统是智能交通系统的重要组成部分&#xff0c;有着广泛的应用。车牌识别系统主要有车牌定位、字符分割和字符识别三部分组成&#xff0c;本文的研究重点是车牌字符识别这部分&#xff0c;本文提出了一种…

RT-Thread Hoist_Motor PID

本节介绍的是一个举升电机&#xff0c;顾名思义&#xff0c;通过转轴控制物体升降&#xff0c;为双通道磁性译码器&#xff0c;利用电调进行操控&#xff0c;具体驱动类似于大学期间最大众的SG180舵机&#xff0c;在一定的频率下&#xff0c;通过调制脉宽进行控制。 设备介绍…

数据结构 图

树是无环连通图&#xff0c;是一种特殊的图。 分类 图分为有向图[边是有方向的]和无向图[边是无方向的]。 无向图(a—b)&#xff0c;建立两条有向图(a—>b&#xff0c;b—>a)&#xff0c;无向图是一种特殊的有向图。 存储有向图 邻接矩阵 ——用于存储比较稠密的图【…

MyBatis的xml实现

1.下载插件MyBatisX 2.添加依赖 <!--Mybatis 依赖包--><dependency><groupId>org.mybatis.spring.boot</groupId><artifactId>mybatis-spring-boot-starter</artifactId><version>2.3.1</version></dependency><!--…

Rust错误处理机制:优雅地管理错误

大家好&#xff01;我是lincyang。 今天&#xff0c;我们要探讨的是Rust语言中的错误处理机制。 Rust作为一种系统编程语言&#xff0c;对错误处理的重视程度是非常高的。它提供了一套既安全又灵活的机制来处理可能出现的错误。 Rust错误处理的两大类别 在Rust中&#xff0…

vue下载xlsx表格

vue下载xlsx表格 // 导入依赖库 import XLSX from xlsx; import FileSaver from file-saver; methods:{btn(){let date new Date()let Y date.getFullYear() -let M (date.getMonth() 1 < 10 ? 0 (date.getMonth() 1) : date.getMonth() 1) -let D (date.getDat…

【设备树添加节点】

节点结束位置都需要加分号 of_iomap 完成映射 of_property_read_u32_array of_property_read_string of_fine_node_by_path

如何优雅的避免空指针异常

文章目录 1.数据准备2.实战&#xff1a;获取用户所在的城市2.1.直接获取&#xff1b;容易出现空指针异常。2.2.使用if-else判断&#xff1b;避免了出现空指针的问题&#xff0c;但是代码结构层次嵌套多&#xff0c;不美观2.3.使用工具类美化一下if判断代码2.4.使用Optional解决…

MySQL数据库:开源且强大的关系型数据库管理系统

大家好&#xff0c;我是咕噜-凯撒&#xff0c;数据在当今信息化时代的重要性不可忽视。作为企业和组织的重要资产&#xff0c;数据的管理和存储变得至关重要&#xff0c;MySQL作为一种关系型数据库管理系统&#xff0c;具有非常多的优势&#xff0c;下面简单的探讨一下MySQL数据…

基于卷尾猴算法优化概率神经网络PNN的分类预测 - 附代码

基于卷尾猴算法优化概率神经网络PNN的分类预测 - 附代码 文章目录 基于卷尾猴算法优化概率神经网络PNN的分类预测 - 附代码1.PNN网络概述2.变压器故障诊街系统相关背景2.1 模型建立 3.基于卷尾猴优化的PNN网络5.测试结果6.参考文献7.Matlab代码 摘要&#xff1a;针对PNN神经网络…

【Java程序员面试专栏 专业技能篇】Java SE核心面试指引(二):面向对象思想

关于Java SE部分的核心知识进行一网打尽,包括四部分:基础知识考察、面向对象思想、核心机制策略、Java新特性,通过一篇文章串联面试重点,并且帮助加强日常基础知识的理解,全局思维导图如下所示 本篇Blog为第二部分:面向对象思想,子节点表示追问或同级提问 面向对象基…

按照指定条件对数据进行分组并对每个分组内的全部数据应用自定义函数进行聚合计算groupby().apply()

【小白从小学Python、C、Java】 【计算机等考500强证书考研】 【Python-数据分析】 按照指定条件对数据进行分组 并对每个分组内的全部数据 应用自定义函数进行聚合计算 groupby().apply() [太阳]选择题 下列输出正确的是&#xff1a; import pandas as pd data {Name: [A, B,…

多线程的概念

点击链接返回标题-> 什么是进程&#xff1f; 进程&#xff08;Process&#xff09;&#xff0c;是程序的基本执行实体。 在早期面向进程设计的计算机结构中&#xff0c;进程是程序的基本执行实体&#xff1b; 在当代面向线程设计的计算机结构中&#xff0c;进程是线程的容器…

求二叉树中指定节点所在的层数(可运行)

运行环境.cpp 我这里设置的是查字符e的层数&#xff0c;大家可以在main函数里改成自己想查的字符。&#xff08;输入的字符一定是自己树里有的&#xff09;。 如果没有输出结果&#xff0c;一定是建树错误&#xff01;&#xff01;&#xff01;&#xff01;&#xff01;&…

Maven环境配置

Maven环境配置 下载Maven 网址&#xff1a;https://maven.apache.org/download.cgi 如果你的系统是Windows的直接按照箭头指示下载即可 环境变量配置 配置环境变量&#xff1a;将 Maven 的安装目录添加到您的系统环境变量中。 右键点击“我的电脑”&#xff08;或“此电脑…

Startdrive中上传参数设置的具体方法和注意事项

Startdrive中上传参数设置的具体方法和注意事项 适用于配 SINAMICS S120、G130、G150、S150和MV(基于CU3x0-2的驱动器)和所有启动驱动器版本INAMICS G115D/G120/G120D/G120C/G120P/G110M(基于CU2x0-2的驱动器) 根据SINAMICS类型的不同,Startdrive中的Upload参数有所不同。…

leetcode刷题详解——粉刷房子

1. 题目链接&#xff1a;LCR 091. 粉刷房子 2. 题目描述&#xff1a; 假如有一排房子&#xff0c;共 n 个&#xff0c;每个房子可以被粉刷成红色、蓝色或者绿色这三种颜色中的一种&#xff0c;你需要粉刷所有的房子并且使其相邻的两个房子颜色不能相同。 当然&#xff0c;因为…

Ubuntu20上离线安装samba

如果联网&#xff0c;一条 sudo apt-get install samba就可能解决问题&#xff0c;但是没有网&#xff0c;那么只能一个一个的解决问题&#xff1a; 我以为装了samba-common就可以了&#xff0c;发现smbd.serverice not found,于是开始了漫长的下载依赖包&#xff0c;安装&…

Linux中Team链路聚合配置

目录 一、Team介绍 二、网卡的bonding和Teaming技术 三、Teaming常用工作模式 四、实验环境 五、添加物理网卡 1、给虚拟机新增四张物理网卡 2、查看网卡信息 六、Team链路聚合配置 1、创建team0的网络接口 2、为team0设置静态IP,掩码位&#xff0c;网关&#xff0c;dns…