Linux内核的I2C驱动框架详解------这应该是我目前600多篇博客中耗时最长的一篇博客

目录

1 I2C驱动整体框架图  

2 I2C控制器

2.1 I2C控制器设备--I2C控制器在内核中也被看做一个设备

2.2 i2c控制器驱动程序

2.3 platform_driver结构体中的probe函数做了什么

2.3.1 疑问: i2cdev_notifier_call函数哪里来的

2.3.2 疑问:为什么有两个probe

2.3.3 疑问:of_i2c_register_devices(adap);和bus_for_each_drv(&i2c_bus_type, NULL, adap, __process_new_adapter)函数的功能是不是重叠了

2.3.4 疑问:platform_bus_type和I2c_bus_type的问题

2.3.5 疑问:为什么i2c_imx_probe函数里面最终还是调用了match和probe函数

3 i2c-core

4 i2c设备

4.1 i2c-client

4.2 i2c-driver

4.2.1  疑问:i2c_register_driver函数中调用driver_register(&driver->driver);函数增加驱动就行了,为什么还调用了i2c_for_each_dev(driver, __process_new_driver);

4.3 probe函数做了什么

4.3.1 疑问:at24_probe里面怎么又有match和probe

5 i2c-tools

5.1 为什么说i2c-tools是一套好用的工具

5.2 为什么说是i2c-tools也是一套示例代码

6 i2c_dev.c通用驱动

7 GPIO模拟I2C

参考文献:


1 I2C驱动整体框架图  

  上图是I2C系统的整体框架,介绍如下。

  • 最上层是应用层,在应用层用户可以直接用open read write对设备进行操作,
  • 往下是设备驱动层,这个就是外围的比如一些用I2C总线连接到SOC的传感器或者EEPROM的驱动程序,这个一般由普通驱动工程师负责,
  • 再往下的I2C-Core是核心层,这个是Linux内核源码里面本来就有的,这里面主要是一些驱动和设备的注册函数以及i2c_transfer函数,
  • 再往下就是I2C控制器驱动,这个一般是由芯片原厂的程序员负责编写,
  • 再往下就是具体的硬件了。

上图是I2C驱动的软件框架,介绍如下。

  • 首先最右边的是I2C设备驱动,它分为i2c-client和i2c-driver,i2c设备驱动是挂载在i2c_bus_type的,其中i2c-client来自设备树文件,通过of_i2c_register_devices(adap);函数转成i2c-client,然后添加到总线的设备链表中,然后i2c_driver结构体通过注册函数添加到总线的驱动链表中,当新增驱动或者设备时,会调用总线的mach函数进行匹配,然后调用驱动里面的probe函数,在probe函数里面添加一个结构体,然后这个结构体里面就包含设备的读写函数。
  • 最左边的是I2C控制器驱动,其中设备树的i2c节点被转换成platform_device,然后添加到platform_bus_type的设备链表中,然后还有一个platform_driver驱动结构体,这个结构体注册到platform_bus_type的驱动链表中,然后当添加设备和驱动的时候,会调用platform_match函数,当匹配之后会调用platform_driver驱动里面的i2x_imx_probe函数。
  • 中间是i2x_imx_probe函数里面做的工作,这个函数里面先是调用了device_register把adapter添加到i2c_bus_type的device结构体中,注意是i2c_bus_type,不是platform_bus_type,adapter里面包含一个algorithm成员,这个algorithm里面有master_xfer函数,i2c-core里面的i2c_transfer函数就是调用的algorithm里面的master_xfer函数,然后i2x_imx_probe函数里面还调用了of_i2c_register_device用于添加i2c-client。

 以上是i2c驱动的整体介绍,下面分别介绍i2c控制器,i2c-core和i2c设备驱动的相关内容。

2 I2C控制器

2.1 I2C控制器设备--I2C控制器在内核中也被看做一个设备

首先看一下i2c控制器设备,在./Linux-4.9.88/arch/arm/boot/dts/imx6ull.dtsi设备树文件中可以看到i2c节点,

            i2c1: i2c@021a0000 {
                #address-cells = <1>;
                #size-cells = <0>;
                compatible = "fsl,imx6ul-i2c", "fsl,imx21-i2c";
                reg = <0x021a0000 0x4000>;
                interrupts = <GIC_SPI 36 IRQ_TYPE_LEVEL_HIGH>;
                clocks = <&clks IMX6UL_CLK_I2C1>;
                status = "disabled"; #实际使用的时候这个地方要改成"okay"。
            };

of_platform_default_populate(NULL, NULL, parent);函数里面把I2C节点转换成platform_device,并添加设备,具体的函数调用关系如下:

of_platform_default_populate(NULL, NULL, parent);

    of_platform_populate(root, of_default_bus_match_table, lookup,parent);

        of_find_node_by_path("/")//查找设备树的根节点

        of_platform_bus_create//这个函数会被循环调用

            of_platform_device_create_pdata

                 of_device_alloc(np, bus_id, parent);

                 of_device_add(dev)

                     device_add(&ofdev->dev);

                         bus_add_device(dev);

                             klist_add_tail(&dev->p->knode_bus, &bus->p->klist_devices);添加到链表

                         blocking_notifier_call_chain(&dev->bus->p->bus_notifier,调用bus_notifier

                         i2cdev_notifier_call

                               i2cdev_attach_adapter                                

                               if (dev->type != &i2c_adapter_type)//直接返回device_create不调用

                                   return 0;

                                   device_create//增加i2c-%d节点

                       bus_probe_device(dev);

                           device_initial_probe(dev);

                               __device_attach(dev, true);                               

                                   bus_for_each_drv(dev->bus, NULL, &data, __device_attach_driver);

                                       __device_attach_driver

                                           driver_match_device(drv, dev);

                                               drv->bus->match ? drv->bus->match(dev, drv) : 1;

                                           driver_probe_device(drv, dev);

                                                 really_probe(dev, drv);

                                                     dev->bus->probe(dev);或drv->probe(dev)

    

最后调用platform_driver结构体里面的i2c_imx_probe函数,i2c_imx_probe函数后面会再分析,platform_device设备先看到这里。

static struct platform_driver i2c_imx_driver = {.probe = i2c_imx_probe,.remove = i2c_imx_remove,.driver = {.name = DRIVER_NAME,.pm = I2C_IMX_PM_OPS,.of_match_table = i2c_imx_dt_ids,},.id_table = imx_i2c_devtype,
};

2.2 i2c控制器驱动程序

通过前面 i2c1 节点的 compatible 属性值 可以在 Linux 源码里面找到对应的驱动文件。这里 i2c1节点的compatible 属性值有两个:“fsl,imx6ul-i2c”和“fsl,imx21-i2c”,在 Linux 源码中搜索这两个字符串即可找到对应的驱动文件。I.MX6U 的 I2C 适配器驱动驱动文件为 drivers/i2c/busses/i2c-imx.c,上面i2c控制器设备最终被转成了platform_device,那么i2c控制器驱动采用的也是platform_driver,挂载在platform_bus_type.

看一个驱动先从入口函数开始看,我们找到drivers/i2c/busses/i2c-imx.c文件中的i2c_adap_imx_init函数,首先调用platform_driver_register(&i2c_imx_driver)注册i2c_imx_driver结构体,具体的函数调用关系如下,然后当match函数发现驱动和设备匹配,就会调用驱动里面的额probe函数,也就是i2c_imx_probe函数。

platform_driver_register(&i2c_imx_driver);

    __platform_driver_register(drv, THIS_MODULE)  

        drv->driver.owner = owner;

        drv->driver.bus = &platform_bus_type;

        drv->driver.probe = platform_drv_probe;

        drv->driver.remove = platform_drv_remove;

        drv->driver.shutdown = platform_drv_shutdown;

        driver_register(&drv->driver);    

            bus_add_driver(drv);

                klist_add_tail(&priv->knode_bus, &bus->p->klist_drivers);把驱动放到klist_driver

                driver_attach(drv);

                    bus_for_each_dev(drv->bus, NULL, drv, __driver_attach);

                        __driver_attach

                            driver_match_device(drv, dev);

                                drv->bus->match ? drv->bus->match(dev, drv) : 1; 

                           driver_probe_device(drv, dev);

                               ret = really_probe(dev, drv);

                                   dev->bus->probe(dev);或drv->probe(dev) 

2.3 platform_driver结构体中的probe函数做了什么

当新增设备或者驱动的时候,都会调用总线的match函数,然后match函数根据compatible属性值或者name去匹配设备和驱动,

 * Platform device IDs are assumed to be encoded like this:* "<name><instance>", where <name> is a short description of the type of* device, like "pci" or "floppy", and <instance> is the enumerated* instance of the device, like '0' or '42'.  Driver IDs are simply* "<name>".  So, extract the <name> from the platform_device structure,* and compare it against the name of the driver. Return whether they match* or not.*/
static int platform_match(struct device *dev, struct device_driver *drv)
{struct platform_device *pdev = to_platform_device(dev);struct platform_driver *pdrv = to_platform_driver(drv);/* When driver_override is set, only bind to the matching driver */if (pdev->driver_override)return !strcmp(pdev->driver_override, drv->name);/* Attempt an OF style match first */if (of_driver_match_device(dev, drv))return 1;/* Then try ACPI style match */if (acpi_driver_match_device(dev, drv))return 1;/* Then try to match against the id table */if (pdrv->id_table)return platform_match_id(pdrv->id_table, pdev) != NULL;/* fall-back to driver name match */return (strcmp(pdev->name, drv->name) == 0);
}

匹配上之后,就会调用驱动结构体里面的probe函数,接下来看一下struct platform_driver i2c_imx_driver结构体中的i2c_imx_probe函数做了什么。

static struct platform_driver i2c_imx_driver = {.probe = i2c_imx_probe,.remove = i2c_imx_remove,.driver = {.name = DRIVER_NAME,.pm = I2C_IMX_PM_OPS,.of_match_table = i2c_imx_dt_ids,},.id_table = imx_i2c_devtype,
};

具体的函数调用关系如下:

i2c_imx_probe

    i2c_add_numbered_adapter

        __i2c_add_numbered_adapter

           i2c_register_adapter

               device_register(&adap->dev);

                   device_add(dev);

                       bus_add_device(dev);

                           klist_add_tail(&dev->p->knode_bus, &bus->p->klist_devices);添加到链表

                       blocking_notifier_call_chain(&dev->bus->p->bus_notifier,调用bus_notifier

                           i2cdev_notifier_call

                               i2cdev_attach_adapter

                                   device_create//增加i2c-%d节点

                       bus_probe_device(dev);

                           device_initial_probe(dev);

                               __device_attach(dev, true);                               

                                   bus_for_each_drv(dev->bus, NULL, &data, __device_attach_driver);

                                       __device_attach_driver

                                           driver_match_device(drv, dev);

                                               drv->bus->match ? drv->bus->match(dev, drv) : 1;//匹配不成功,直接返回,

                                           driver_probe_device(drv, dev);上面匹配不成功,这里直接不调用

                                                 really_probe(dev, drv);

                                                     dev->bus->probe(dev);或drv->probe(dev),

               of_i2c_register_devices(adap);

                    of_i2c_register_device(adap, node);

                        i2c_new_device(adap, &info);用来增加client的

                        client->dev.parent = &client->adapter->dev;

                        client->dev.bus = &i2c_bus_type;//注意这里是i2c-bus,不是platform_bus

                        client->dev.type = &i2c_client_type;

                        client->dev.of_node = info->of_node;

                        client->dev.fwnode = info->fwnode;

                            status = device_register(&client->dev);注册新的 i2c_client 设备

                                device_add(dev);

                                    bus_add_device(dev); 

                                        klist_add_tail(&dev->p->knode_bus, &bus->p->klist_devices);

                                    bus_probe_device

                                        device_initial_probe(dev);

                                            __device_attach(dev, true);

                                                bus_for_each_drv

                                                      __device_attach_driver       

                                                          driver_match_device

                                                             drv->bus->match ? drv->bus->match(dev, drv) : 1;

                                                          driver_probe_device(drv, dev);

                                                              really_probe(dev, drv);

                                                                  dev->bus->probe(dev);或drv->probe(dev)

                bus_for_each_drv(&i2c_bus_type, NULL, adap, __process_new_adapter)

                    __process_new_adapter(struct device_driver *d, void *data)                 

                        i2c_do_add_adapter(struct i2c_driver *driver, struct i2c_adapter *adap)

                            i2c_detect(adap, driver);通过i2c_detect检测是否有适合的设备连接在总线上

                                if (!driver->detect || !address_list) return 0;如果没定义detect或address_list就直接返回了

                                i2c_detect_address(temp_client, driver);

                                    err = driver->detect(temp_client, &info);根据对应client发送一个测试数据如果没有问题则证明这个client是这个驱动所需要的设备,最后将设备添加到链表,最后调用bus_probe_device,尝试绑定驱动。

                                    client = i2c_new_device(adapter, &info);用来增加client的

                                         device_register(&client->dev);

                                             device_add(dev);   

                                                 bus_add_device(dev);

                                                     klist_add_tail

                                                 bus_probe_device(dev);

                                                     bus_probe_device(dev);

                                                         device_initial_probe(dev);

                                                             __device_attach(dev, true);

                                                                 bus_for_each_drv

                                                                     __device_attach_driver

                                                                         driver_match_device(drv, dev);

                                                                             drv->bus->match ? drv->bus->match(dev, drv) : 1;

                                                                         driver_probe_device(drv, dev);

                                                                             really_probe(dev, drv);

                                                                                 dev->bus->probe(dev);或drv->probe(dev)

                    

        

自己在看内核代码,得到了上面的函数调用流程,但同时有以下几个问题或疑问;

2.3.1 疑问: i2cdev_notifier_call函数哪里来的

上面流程中为什么 blocking_notifier_call_chain(&dev->bus->p->bus_notifier,调用bus_notifier会调用i2cdev_notifier_call,原因在这里。

static int i2cdev_notifier_call(struct notifier_block *nb, unsigned long action,void *data)
{struct device *dev = data;switch (action) {case BUS_NOTIFY_ADD_DEVICE:return i2cdev_attach_adapter(dev, NULL);case BUS_NOTIFY_DEL_DEVICE:return i2cdev_detach_adapter(dev, NULL);}return 0;
}static struct notifier_block i2cdev_notifier = {.notifier_call = i2cdev_notifier_call,
};static int __init i2c_dev_init(void)
{...res = bus_register_notifier(&i2c_bus_type, &i2cdev_notifier);...
}

2.3.2 疑问:为什么有两个probe

platform_driver 这个结构体里面有个probe函数了,

static struct platform_driver i2c_imx_driver = {.probe = i2c_imx_probe,.remove = i2c_imx_remove,.driver = {.name = DRIVER_NAME,.pm = I2C_IMX_PM_OPS,.of_match_table = i2c_imx_dt_ids,},.id_table = imx_i2c_devtype,
};

可是在注册这个驱动的时候,怎么里面还有个platform_drv_probe函数,

 */
int __platform_driver_register(struct platform_driver *drv,struct module *owner)
{drv->driver.owner = owner;drv->driver.bus = &platform_bus_type;drv->driver.probe = platform_drv_probe;drv->driver.remove = platform_drv_remove;drv->driver.shutdown = platform_drv_shutdown;return driver_register(&drv->driver);
}

看了下代码发现,这是因为外层的platform_drv_probe里面其实最终就是调用了platform_driver里面的probe。

static int platform_drv_probe(struct device *_dev)
{struct platform_driver *drv = to_platform_driver(_dev->driver);struct platform_device *dev = to_platform_device(_dev);int ret;ret = of_clk_set_defaults(_dev->of_node, false);if (ret < 0)return ret;ret = dev_pm_domain_attach(_dev, true);if (ret != -EPROBE_DEFER) {if (drv->probe) {ret = drv->probe(dev);  //在这个地方调用了platform_driver的probe函数if (ret)dev_pm_domain_detach(_dev, true);} else {/* don't fail if just dev_pm_domain_attach failed */ret = 0;}}if (drv->prevent_deferred_probe && ret == -EPROBE_DEFER) {dev_warn(_dev, "probe deferral not supported\n");ret = -ENXIO;}return ret;
}

2.3.3 疑问:of_i2c_register_devices(adap);bus_for_each_drv(&i2c_bus_type, NULL, adap, __process_new_adapter)函数的功能是不是重叠了

在看上面的函数调用流程的时候,发现of_i2c_register_devices(adap); bus_for_each_drv(&i2c_bus_type, NULL, adap, __process_new_adapter)函数里面都调用了i2c_new_device来添加i2c-client的,那功能岂不是重复了吗,仔细看了下代码发现应该是这样的,of_i2c_register_devices(adap);是从设备树节点中获取设备信息,然后注册i2c-client,而bus_for_each_drv(&i2c_bus_type, NULL, adap, __process_new_adapter)最终其实是调用的i2c_detect,然后根据驱动里面定义的detect函数和address_list去检测总线上的i2c-client,然后这相当于是添加client的不同的方法,具体解释可以看内核的这个文档:Linux内核中实例化i2c设备的几种方法----./Linux-4.9.88/Documentation/i2c/instantiating-devices文件翻译_陈 洪 伟的博客-CSDN博客

2.3.4 疑问:platform_bus_type和I2c_bus_type的问题

注意在函数i2c_adap_imx_init

static int __init i2c_adap_imx_init(void)
{return platform_driver_register(&i2c_imx_driver);
}

然后进一步调用__platform_driver_register,这时候的总线是platform_bus_type

int __platform_driver_register(struct platform_driver *drv,struct module *owner)
{drv->driver.owner = owner;drv->driver.bus = &platform_bus_type;drv->driver.probe = platform_drv_probe;drv->driver.remove = platform_drv_remove;drv->driver.shutdown = platform_drv_shutdown;return driver_register(&drv->driver);
}

 但是在驱动中的probe中注册adapter(控制器)时调用i2c_add_numbered_adapter接口,这时候的总线是i2c_bus_type。

static int i2c_register_adapter(struct i2c_adapter *adap)
{...dev_set_name(&adap->dev, "i2c-%d", adap->nr);//BUS指向I2Cadap->dev.bus = &i2c_bus_type;adap->dev.type = &i2c_adapter_type;res = device_register(&adap->dev);...

又仔细看了下代码理解了一下,其实是这样的,设备树节点中的I2C节点确实是转成platform_device然后挂载到platform_bus总线上的,然后当platform_bus_type的match函数发现设备和驱动匹配后,调用driver结构体中的probe函数,然后再probe函数中构建adapter并且添加,然后adapter是添加到i2c_bus_type的。

2.3.5 疑问:为什么i2c_imx_probe函数里面最终还是调用了match和probe函数

这个 i2c_imx_probe函数是当plarform_bus_type的match函数发现控制器驱动和控制器设备匹配之后调用i2c_imx_probe函数,然后在这里面增加adapter,可是在i2c_imx_probe函数内部一层层的最终怎么又有了drv->bus->match ? drv->bus->match(dev, drv) : 1;和 dev->bus->probe(dev);或drv->probe(dev)函数, probe里面怎么又调用了probe,那内部的probe是用来做什么的。

i2c_imx_probe

    i2c_add_numbered_adapter

        __i2c_add_numbered_adapter

           i2c_register_adapter

               device_register(&adap->dev);

                   device_add(dev);

                       bus_add_device(dev);

                           klist_add_tail(&dev->p->knode_bus, &bus->p->klist_devices);添加到链表

                       blocking_notifier_call_chain(&dev->bus->p->bus_notifier,调用bus_notifier

                           i2cdev_notifier_call

                               i2cdev_attach_adapter

                                   device_create//增加i2c-%d节点

                       bus_probe_device(dev);

                           device_initial_probe(dev);

                               __device_attach(dev, true);                               

                                   bus_for_each_drv(dev->bus, NULL, &data, __device_attach_driver);

                                       __device_attach_driver

                                           driver_match_device(drv, dev);

                                               drv->bus->match ? drv->bus->match(dev, drv) : 1;

                                           driver_probe_device(drv, dev);

                                                 really_probe(dev, drv);

                                                     dev->bus->probe(dev);或drv->probe(dev)

为什么里面又有probe,看不明白很难受,我又去看内核代码把i2c_imx_probe函数的调用流程捋了,我发现,应该是这样的,不过不确定我理解的是不是对的。前面的那些增加什么adapter都是没问题的,在注册adapter的时候,bus是i2c_bus_tyupe,

static int i2c_register_adapter(struct i2c_adapter *adap)
{...adap->dev.bus = &i2c_bus_type;adap->dev.type = &i2c_adapter_type;res = device_register(&adap->dev);...}

那么,到了 drv->bus->match,这里的时候,这个bus是i2c_bus_type,那么调用的也就是

struct bus_type i2c_bus_type = {.name		= "i2c",.match		= i2c_device_match,.probe		= i2c_device_probe,.remove		= i2c_device_remove,.shutdown	= i2c_device_shutdown,
};

 那么也就是

static int i2c_device_match(struct device *dev, struct device_driver *drv)
{struct i2c_client	*client = i2c_verify_client(dev);struct i2c_driver	*driver;if (!client)return 0;/* Attempt an OF style match */if (of_driver_match_device(dev, drv))return 1;/* Then ACPI style match */if (acpi_driver_match_device(dev, drv))return 1;driver = to_i2c_driver(drv);/* match on an id table if there is one */if (driver->id_table)return i2c_match_id(driver->id_table, client) != NULL;return 0;
}

那么由于这里添加的是adapter设备,那么if (!client)根本就不成立,所以,这里match是0,那么

static int __device_attach_driver(struct device_driver *drv, void *_data)
{struct device_attach_data *data = _data;struct device *dev = data->dev;bool async_allowed;int ret;/** Check if device has already been claimed. This may* happen with driver loading, device discovery/registration,* and deferred probe processing happens all at once with* multiple threads.*/if (dev->driver)return -EBUSY;ret = driver_match_device(drv, dev);if (ret == 0) {/* no match */return 0;} else if (ret == -EPROBE_DEFER) {dev_dbg(dev, "Device match requests probe deferral\n");driver_deferred_probe_add(dev);} else if (ret < 0) {dev_dbg(dev, "Bus failed to match device: %d", ret);return ret;} /* ret > 0 means positive match */async_allowed = driver_allows_async_probing(drv);if (async_allowed)data->have_async = true;if (data->check_async && async_allowed != data->want_async)return 0;return driver_probe_device(drv, dev);
}

由于driver_match_device(drv, dev);函数直接返回的0,那么__device_attach_driver函数也就直接返回了,也就不会调用driver_probe_device(drv, dev);函数了。

3 i2c-core

 I2C 设备和驱动的匹配过程是由 I2C 核心来完成的,drivers/i2c/i2c-core.c 就是 I2C 的核心
部分,I2C 核心提供了一些与具体硬件无关的 API 函数,比如前面讲过的: 
  1、i2c_adapter 注册/注销函数 
int i2c_add_adapter(struct i2c_adapter *adapter) 
int i2c_add_numbered_adapter(struct i2c_adapter *adap) 
void i2c_del_adapter(struct i2c_adapter * adap) 
  2、i2c_driver 注册/注销函数 
int i2c_register_driver(struct module *owner, struct i2c_driver *driver) 
int i2c_add_driver (struct i2c_driver *driver) 
void i2c_del_driver(struct i2c_driver *driver) 
设备和驱动的匹配过程也是由 I2C 总线完成的,I2C 总线的数据结构为 i2c_bus_type,定义
在 drivers/i2c/i2c-core.c 文件。

另外i2c-core里面还有i2c_transfer函数,然后设备驱动里面直接用i2c_transfer 函数发送数据,而这个i2c_transfer 函数最终调用的是adapter里面的algorithm里面的master_xfer 函数,从这里也能看出来,i2c-core起到了一个承上启下的作用,连接设备驱动和控制器驱动。

4 i2c设备

4.1 i2c-client

i2c-client来自设备树文件,一般放在i2c节点里面的子节点,比如下面的ap3216设备。

&i2c1 {
        ap3216c@1e {
            compatible = "lite-on,ap3216c";
            reg = <0x1e>;
        };/*i2c里面的子节点,就是用来表示i2c设备的*/
};

&i2c1 {
    clock-frequency = <100000>;
    pinctrl-names = "default";
    pinctrl-0 = <&pinctrl_i2c1>;
    status = "okay";
};/*这个是用来表示i2c控制器的,不是i2c设备的*/

i2c总线节点下的子节点不会被转成platform_device,他们是由I2C总线驱动程序来处理, 把I2C下的设备节点转成client其实是i2c控制器驱动程序里面的probe函数来做的,前面已经分析过probe函数内部的流程,其中中间部分的of_i2c_register_devices函数就是用来增加i2c-client的。

i2c_imx_probe

    i2c_add_numbered_adapter

        __i2c_add_numbered_adapter

           i2c_register_adapter

               device_register(&adap->dev);

                   device_add(dev);

                       bus_add_device(dev);

                           klist_add_tail(&dev->p->knode_bus, &bus->p->klist_devices);添加到链表

                       blocking_notifier_call_chain(&dev->bus->p->bus_notifier,调用bus_notifier

                           i2cdev_notifier_call

                               i2cdev_attach_adapter

                                   device_create//增加i2c-%d节点

                       bus_probe_device(dev);

                           device_initial_probe(dev);

                               __device_attach(dev, true);                               

                                   bus_for_each_drv(dev->bus, NULL, &data, __device_attach_driver);

                                       __device_attach_driver

                                           driver_match_device(drv, dev);

                                               drv->bus->match ? drv->bus->match(dev, drv) : 1;

                                           driver_probe_device(drv, dev);

                                                 really_probe(dev, drv);

                                                     dev->bus->probe(dev);或drv->probe(dev)

               of_i2c_register_devices(adap);

                    of_i2c_register_device(adap, node);

                        i2c_new_device(adap, &info);用来增加client的

                        client->dev.parent = &client->adapter->dev;

                        client->dev.bus = &i2c_bus_type;//注意这里是i2c-bus,不是platform_bus

                        client->dev.type = &i2c_client_type;

                        client->dev.of_node = info->of_node;

                        client->dev.fwnode = info->fwnode;

                            status = device_register(&client->dev);注册新的 i2c_client 设备

                                device_add(dev);

                                    bus_add_device(dev); 

                                        klist_add_tail(&dev->p->knode_bus, &bus->p->klist_devices);

                                    bus_probe_device

                                        device_initial_probe(dev);

                                            __device_attach(dev, true);

                                                bus_for_each_drv

                                                      __device_attach_driver       

                                                          driver_match_device

                                                             drv->bus->match ? drv->bus->match(dev, drv) : 1;

                                                          driver_probe_device(drv, dev);

                                                              really_probe(dev, drv);

                                                                  dev->bus->probe(dev);或drv->probe(dev)

                bus_for_each_drv(&i2c_bus_type, NULL, adap, __process_new_adapter)

                    __process_new_adapter(struct device_driver *d, void *data)                 

                        i2c_do_add_adapter(struct i2c_driver *driver, struct i2c_adapter *adap)

                            i2c_detect(adap, driver);通过i2c_detect检测是否有适合的设备连接在总线上

                                if (!driver->detect || !address_list) return 0;如果没定义detect或address_list就直接返回了

                                i2c_detect_address(temp_client, driver);

                                    err = driver->detect(temp_client, &info);根据对应client发送一个测试数据如果没有问题则证明这个client是这个驱动所需要的设备,最后将设备添加到链表,最后调用bus_probe_device,尝试绑定驱动。

                                    client = i2c_new_device(adapter, &info);用来增加client的

                                         device_register(&client->dev);

                                             device_add(dev);   

                                                 bus_add_device(dev);

                                                     klist_add_tail

                                                 bus_probe_device(dev);

                                                     bus_probe_device(dev);

                                                         device_initial_probe(dev);

                                                             __device_attach(dev, true);

                                                                 bus_for_each_drv

                                                                     __device_attach_driver

                                                                         driver_match_device(drv, dev);

                                                                             drv->bus->match ? drv->bus->match(dev, drv) : 1;

                                                                         driver_probe_device(drv, dev);

                                                                             really_probe(dev, drv);

                                                                                 dev->bus->probe(dev);或drv->probe(dev)

                    

         

4.2 i2c-driver

i2c_driver采用的是这个总线结构体

struct bus_type i2c_bus_type = {.name		= "i2c",.match		= i2c_device_match,.probe		= i2c_device_probe,.remove		= i2c_device_remove,.shutdown	= i2c_device_shutdown,
};

先从入口函数module_init(at24_init);开始看,这里面调用了i2c_add_driver(&at24_driver);,然后里面调用了i2c_register_driver(THIS_MODULE, driver),然后里面调用了driver_register(&driver->driver);然后再往里调用了bus_add_driver(drv);,然后继续往里调用了driver_attach(drv);然后继续bus_for_each_dev(drv->bus, NULL, drv, __driver_attach);这个函数就是就是针对每个device都调用__driver_attach函数,那进去__driver_attach函数发现里面有两个重要的函数

  • driver_match_device(drv, dev);
  • driver_probe_device(drv, dev);

driver_match_device(drv, dev);里面进一步调用了drv->bus->match(dev, drv),这便是i2c_bus_type里面的match函数了。

driver_probe_device(drv, dev);里面进一步调用了really_probe(dev, drv);,然后再往里进一步调用了dev->bus->probe(dev);,这便是i2c_bus_type里面的probe函数了。

i2c_add_driver(&at24_driver)

    i2c_register_driver(THIS_MODULE, driver)

        driver_register(&driver->driver)

             bus_add_driver(drv)

                  klist_add_tail(&priv->knode_bus, &bus->p->klist_drivers)把驱动放到klist_driver

                  driver_attach(drv)

                      bus_for_each_dev(drv->bus, NULL, drv, __driver_attach);

                         __driver_attach(struct device *dev, void *data)

                             driver_match_device(drv, dev);

                                 drv->bus->match ? drv->bus->match(dev, drv) : 1; 

                              driver_probe_device(drv, dev);

                                  really_probe(dev, drv);

                                      dev->bus->probe(dev);或drv->probe(dev)   

    /* Walk the adapters that are already present */

    i2c_for_each_dev(driver, __process_new_driver);//

        __process_new_driver  //下面的代码不会被调用,从这里就直接返回了。          

            i2c_do_add_adapter(struct i2c_driver *driver,struct i2c_adapter *adap)

                i2c_detect(adap, driver); 

                    if (!driver->detect || !address_list) return 0;如果没定义detect或address_list就直接返回了

                        i2c_detect_address(temp_client, driver);

                            err = driver->detect(temp_client, &info);

                                client = i2c_new_device(adapter, &info);

                                     device_register(&client->dev);

                                         device_add(dev);   

                                             bus_add_device(dev);

                                                 klist_add_tail

                                             bus_probe_device(dev);

                                                 bus_probe_device(dev);

                                                     device_initial_probe(dev);

                                                         __device_attach(dev, true);

                                                             bus_for_each_drv

                                                                 __device_attach_driver

                                                                     driver_match_device(drv, dev);

                                                                         drv->bus->match ? drv->bus->match(dev, drv) : 1;

                                                                      driver_probe_device(drv, dev);

                                                                          really_probe(dev, drv);

                                                                             dev->bus->probe(dev);或drv->probe(dev)

4.2.1  疑问:i2c_register_driver函数中调用driver_register(&driver->driver);函数增加驱动就行了,为什么还调用了i2c_for_each_dev(driver, __process_new_driver);

我在看 i2c_add_driver(&at24_driver)函数的时候,发现里面调用driver_register函数其实就已经完成了驱动注册工作,下面还调用了一个i2c_for_each_dev(driver, __process_new_driver);做什么用,而且这个函数内部竟然是i2c_do_add_adapter的,又看了下代码,其实__process_new_driver函数没被调用,

int i2c_register_driver(struct module *owner, struct i2c_driver *driver)
{int res;/* Can't register until after driver model init */if (WARN_ON(!is_registered))return -EAGAIN;/* add the driver to the list of i2c drivers in the driver core */driver->driver.owner = owner;driver->driver.bus = &i2c_bus_type;INIT_LIST_HEAD(&driver->clients);/* When registration returns, the driver core* will have called probe() for all matching-but-unbound devices.*/res = driver_register(&driver->driver);if (res)return res;pr_debug("driver [%s] registered\n", driver->driver.name);/* Walk the adapters that are already present */i2c_for_each_dev(driver, __process_new_driver);return 0;
}

原因在这里,

static int __process_new_driver(struct device *dev, void *data)
{if (dev->type != &i2c_adapter_type)return 0;return i2c_do_add_adapter(data, to_i2c_adapter(dev));
}

这里有个判断if (dev->type != &i2c_adapter_type),所以后面的函数根本没被调用,疑问解决。

4.3 probe函数做了什么

当新增设备或驱动后,会调用i2c_bus_type中的match函数,match匹配之后就会调用驱动程序里面的probe函数,来看一下驱动程序里面的probe函数做了什么。

at24_probe 

    ....

    at24->nvmem_config.name = dev_name(&client->dev);

    at24->nvmem_config.dev = &client->dev;

    at24->nvmem_config.read_only = !writable;

    at24->nvmem_config.root_only = true;

    at24->nvmem_config.owner = THIS_MODULE;

    at24->nvmem_config.compat = true;

    at24->nvmem_config.base_dev = &client->dev;

    at24->nvmem_config.reg_read = at24_read;//读函数

    at24->nvmem_config.reg_write = at24_write;//写函数

    at24->nvmem_config.priv = at24;

    at24->nvmem_config.stride = 1;

    at24->nvmem_config.word_size = 1;

    at24->nvmem_config.size = chip.byte_len;

    at24->nvmem = nvmem_register(&at24->nvmem_config);

    ....      

        nvmem->id = rval;

         nvmem->owner = config->owner;

        nvmem->stride = config->stride;

        nvmem->word_size = config->word_size;

        nvmem->size = config->size;

        nvmem->dev.type = &nvmem_provider_type;

        nvmem->dev.bus = &nvmem_bus_type;//注意这个地方。

        nvmem->dev.parent = config->dev;

        nvmem->priv = config->priv;

        nvmem->reg_read = config->reg_read;

        nvmem->reg_write = config->reg_write;

        np = config->dev->of_node;

        nvmem->dev.of_node = np;

        rval = device_add(&nvmem->dev);//这个device_add函数在前面看多很多遍了,无非就是那一套。

            bus_add_device(dev);

            bus_probe_device(dev);

                device_initial_probe(dev);

                __device_attach(dev, true);

                    bus_for_each_drv(dev->bus, NULL, &data,__device_attach_driver);

                        __device_attach_driver

                            driver_match_device(drv, dev);

                                 return drv->bus->match ? drv->bus->match(dev, drv) : 1;

                             driver_probe_device(drv, dev);

                                  driver_probe_device(drv, dev);

                                       really_probe(dev, drv);

                                           dev->bus->probe(dev);或drv->probe(dev)

4.3.1 疑问:at24_probe里面怎么又有match和probe

我的理解at24_probe 函数里面应该是类似实现一个file_operation结构体,然后里面有具体的读写函数这不就行了吗,可是从上面的流程看怎么at24_probe 函数里面又调用了match和probe函数,好吧继续看内核代码解决我的困惑。。。。。。。。

首先看一下

static struct bus_type nvmem_bus_type = {.name		= "nvmem",
};

然后发现这里面没定义match函数,那么match函数就是空的,那么return drv->bus->match ? drv->bus->match(dev, drv) : 1;直接返回1,然后会调用driver_probe_device(drv, dev);函数,

static int really_probe(struct device *dev, struct device_driver *drv)
{...if (dev->bus->probe) {ret = dev->bus->probe(dev);if (ret)goto probe_failed;} else if (drv->probe) {ret = drv->probe(dev);if (ret)goto probe_failed;}...
}

这里调用dev->bus->probe空的,那么就去调用driver结构体的probe函数,那我在内核代码中找nvmem driver结构体,没找到,那么求助Bing AI

 那么

struct nvmem_device {const char		*name;struct module		*owner;struct device		dev;int			stride;int			word_size;int			ncells;int			id;int			users;size_t			size;bool			read_only;int			flags;struct bin_attribute	eeprom;struct device		*base_dev;nvmem_reg_read_t	reg_read;nvmem_reg_write_t	reg_write;void *priv;
};

 这里面就没有probe函数,所以else if (drv->probe)也不成立。

到这里,I2C驱动框架其实就算是看完了,下面再简单介绍一下I2C驱动相关的其他东西。

5 i2c-tools

i2c-tools 是一套好用的工具,也是一套示例代码。

5.1 为什么说i2c-tools是一套好用的工具

为什么说i2c-tools是一套好用的工具,因为他里面实现了 i2cdetect检测函数, i2cget读函数, i2cset写函数,i2ctransfer传输函数,我们可以字节用这些命令去操作或调试I2C设备,比如 

5.2 为什么说是i2c-tools也是一套示例代码

为什么说i2c-tools也是一套示例代码,比如如果用I2C总线进行传输,在./tools/i2ctransfer.c里面,我们可以看到他的代码实现,

那我们就可以模仿他的流程操作我们自己的I2C设备,上面的比如 set_slave_addr函数具体实现就是在./tools/i2cbusses.c里面,我们写代码需要包含./tools/i2cbusses.c文件。

如果用SMBus总线进行传输,i2cget.c、i2cset.c里面的示例代码是这样的

 然后如果我们想用SMBus总线操作我们的i2c设备,我们就可以模仿他的代码,上面的比如i2c_smbus_access函数具体实现是在./lib/smbus.c文件里面,那我们写代码的时候需要包含./lib/smbus.c文件.

比如编写一个读写eeprom的测试程序


#include <sys/ioctl.h>
#include <errno.h>
#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <linux/i2c.h>
#include <linux/i2c-dev.h>
#include <i2c/smbus.h>
#include "i2cbusses.h"
#include <time.h>/* ./at24c02 <i2c_bus_number> w "100ask.taobao.com"* ./at24c02 <i2c_bus_number> r*/int main(int argc, char **argv)
{unsigned char dev_addr = 0x50;unsigned char mem_addr = 0;unsigned char buf[32];int file;char filename[20];unsigned char *str;int ret;struct timespec req;if (argc != 3 && argc != 4){printf("Usage:\n");printf("write eeprom: %s <i2c_bus_number> w string\n", argv[0]);printf("read  eeprom: %s <i2c_bus_number> r\n", argv[0]);return -1;}file = open_i2c_dev(argv[1][0]-'0', filename, sizeof(filename), 0);if (file < 0){printf("can't open %s\n", filename);return -1;}if (set_slave_addr(file, dev_addr, 1)){printf("can't set_slave_addr\n");return -1;}if (argv[2][0] == 'w'){// write str: argv[3]str = argv[3];req.tv_sec  = 0;req.tv_nsec = 20000000; /* 20ms */while (*str){// mem_addr, *str// mem_addr++, str++ret = i2c_smbus_write_byte_data(file, mem_addr, *str);if (ret){printf("i2c_smbus_write_byte_data err\n");return -1;}// wait tWR(10ms)nanosleep(&req, NULL);mem_addr++;str++;}ret = i2c_smbus_write_byte_data(file, mem_addr, 0); // string end charif (ret){printf("i2c_smbus_write_byte_data err\n");return -1;}}else{// readret = i2c_smbus_read_i2c_block_data(file, mem_addr, sizeof(buf), buf);if (ret < 0){printf("i2c_smbus_read_i2c_block_data err\n");return -1;}buf[31] = '\0';printf("get data: %s\n", buf);}return 0;}

6 i2c_dev.c通用驱动

i2c_dev.c其实就是通用驱动或者说万能驱动,它里面实现了一个

static const struct file_operations i2cdev_fops = {.owner		= THIS_MODULE,.llseek		= no_llseek,.read		= i2cdev_read,.write		= i2cdev_write,.unlocked_ioctl	= i2cdev_ioctl,.open		= i2cdev_open,.release	= i2cdev_release,
};

如果我们使用i2c_dev.c这个万能驱动,那么我们不需要增加i2c_client以及i2c_driver,然后我们在应用层可以直接操作i2c控制器,然后去和挂载在I2C总线的从设备进行通信,就相当于把操作具体硬件的时序放到应用去实现了,要求应用开发人员既要了解具体的硬件操作时序,也要了解I2C总线协议。也就是红线画的走向

7 GPIO模拟I2C

简单看一下./Linux-4.9.88_just_for_read/drivers/i2c/busses/i2c-gpio.c文件,还是从入口函数开始看

static struct platform_driver i2c_gpio_driver = {.driver		= {.name	= "i2c-gpio",.of_match_table	= of_match_ptr(i2c_gpio_dt_ids),},.probe		= i2c_gpio_probe,.remove		= i2c_gpio_remove,
};
static int __init i2c_gpio_init(void)
{int ret;ret = platform_driver_register(&i2c_gpio_driver);if (ret)printk(KERN_ERR "i2c-gpio: probe failed: %d\n", ret);return ret;
}

函数调用关系无非又是那一套 

i2c_gpio_init

    platform_driver_register

        __platform_driver_register

        drv->driver.owner = owner;

        drv->driver.bus = &platform_bus_type;

        drv->driver.probe = platform_drv_probe;

        drv->driver.remove = platform_drv_remove;

        drv->driver.shutdown = platform_drv_shutdown;

        driver_register(&drv->driver);

            bus_add_driver

                  driver_attach(drv);

                        __driver_attach

                            driver_match_device(drv, dev);

                                 drv->bus->match ? drv->bus->match(dev, drv) : 1;

                             driver_probe_device(drv, dev);

                                  really_probe(dev, drv);

                                      dev->bus->probe或drv->probe(dev)

match之后就调用驱动结构体里面的i2c_gpio_probe函数,然后首先调用of_i2c_gpio_get_props函数从设备树里面获取gpio的信息和一些属性,就是频率,开漏的设置,然后获取sda引脚,scl引脚, 然后根据从设备树中获取的值设置adapter,然后利用i2c_bit_add_numbered_bus注册adapter,然后i2c_bit_add_numbered_bus里面是调用了__i2c_bit_add_bus,在这里面设置了algo算法,然后add_adapter。

i2c_gpio_probe

    of_i2c_gpio_get_pins

    devm_gpio_request(&pdev->dev, sda_pin, "sda");

    devm_gpio_request(&pdev->dev, scl_pin, "scl");

    i2c_bit_add_numbered_bus(adap);

        __i2c_bit_add_bus(adap, i2c_add_numbered_adapter);         

            adap->algo = &i2c_bit_algo;

            adap->retries = 3;

            if (bit_adap->getscl == NULL)

                adap->quirks = &i2c_bit_quirk_no_clk_stretch;

            ret = add_adapter(adap);//add_adapter就是i2c_add_numbered_adapter

                再往后的调用不看了,前面类似的分析了很多遍了

以上是Linux内核的驱动框架介绍,如有错误和问题恳请指出。

参考文献

正点原子驱动开发手册

韦东山老师驱动开发大全学习视频

Linux4.9.88内核源码

7. 平台设备驱动 — [野火]嵌入式Linux驱动开发实战指南——基于i.MX6ULL系列 文档

I2C驱动实现的两种思路(i2c-dev.c和i2c-core.c)_正在起飞的蜗牛的博客-CSDN博客

https://www.cnblogs.com/happybirthdaytoyou/p/13594060.html  

【I2C】通用驱动i2c-dev分析_i2c_dev_init_ZHONGCAI0901的博客-CSDN博客

linux内核I2C子系统详解——看这一篇就够了_正在起飞的蜗牛的博客-CSDN博客

https://www.cnblogs.com/burnk/p/17454052.html

十分钟带你搞懂 Linux I2C 软件架构_哔哩哔哩_bilibili

I2C——i2c_driver的注册及probe探测函数调用过程_i2c probe_lxllinux的博客-CSDN博客

内核对设备树的处理__device_node转换为platform_device_initcall_from_entry_陈 洪 伟的博客-CSDN博客 https://www.cnblogs.com/schips/p/linux_driver_device_node_to_platform_device.html

Linux设备模型之device_add_庐州拎壶冲的博客-CSDN博客

https://www.cnblogs.com/yangjiguang/p/6220600.html

i2c设备添加、驱动的加载和设备匹配_安卓 i2c 心率设备添加_bruk_spp的博客-CSDN博客

【I2C】Linux I2C子系统分析_ZHONGCAI0901的博客-CSDN博客 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/15764.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

2023 ISSE观察:智能遮阳窗帘行业蓬勃发展,AI设计引热议

7月31日&#xff0c;上海国际智能遮阳与建筑节能展览会落下帷幕。作为智能遮阳的行业展会&#xff0c;展会三天&#xff0c;现场热闹非凡&#xff0c;参展商和观展者络绎不绝。 作为一大行业盛事&#xff0c;2023 ISSE展会方打造了五大展区&#xff0c;除了提供系统门窗装修方案…

二、SQL-6.DCL-1).用户管理

一、DCL介绍 Data Control Language 数据控制语言 用来管理数据库 用户、控制数据库的 访问权限。 二、语法 1、管理用户 管理用户在系统数据库mysql中的user表中创建、删除一个用户&#xff0c;需要Host&#xff08;主机名&#xff09;和User&#xff08;用户名&#xff0…

openGauss学习笔记-26 openGauss 高级数据管理-约束

文章目录 openGauss学习笔记-26 openGauss 高级数据管理-约束26.1 NOT NULL约束26.2 UNIQUE约束26.3 PRIMARY KEY26.4 FOREIGN KEY26.5 CHECK约束 openGauss学习笔记-26 openGauss 高级数据管理-约束 约束子句用于声明约束&#xff0c;新行或者更新的行必须满足这些约束才能成…

基于SHARC+®单核的ADSP-21567KBCZ6、ADSP-21566BBCZ4、ADSP-21566KBCZ4高性能DSP处理器产品

ADSP-2156x 处理器的速度高达 1 GHz&#xff0c;属于 SHARC 系列产品。ADSP-2156x 处理器基于 SHARC 单核。ADSP-2156x SHARC 处理器是 SIMD SHARC 系列数字信号处理器 (DSP) 中的一款产品&#xff0c;采用 ADI 的超级哈佛架构。这些 32 位/40 位/64 位浮点处理器已针对高性能音…

Rust vs Go:常用语法对比(九)

题图来自 Golang vs Rust - The Race to Better and Ultimate Programming Language 161. Multiply all the elements of a list Multiply all the elements of the list elements by a constant c 将list中的每个元素都乘以一个数 package mainimport ( "fmt")func …

Android Unit Test

一、测试基础知识 1.1 测试级别 测试金字塔&#xff08;如图 2 所示&#xff09;说明了应用应如何包含三类测试&#xff08;即小型、中型和大型测试&#xff09;&#xff1a; 小型测试是指单元测试&#xff0c;用于验证应用的行为&#xff0c;一次验证一个类。 中型测试是指…

创造自己的宠物医院预约服务小程序,步骤详解

在现代社会&#xff0c;越来越多的人开始养宠物&#xff0c;而宠物的健康管理也成为了一个重要的话题。为了方便宠物主人随时随地进行宠物医院的管理和服务&#xff0c;开发一个宠物医院管理小程序是很有必要的。今天我们将分享一些制作宠物医院管理小程序的技巧&#xff0c;帮…

Vue没有node_modules怎么办

npm install 一下 然后再npm run serve 就可以运行了

基于多任务学习卷积神经网络的皮肤损伤联合分割与分类

文章目录 Joint segmentation and classification of skin lesions via a multi-task learning convolutional neural network摘要本文方法实验结果 Joint segmentation and classification of skin lesions via a multi-task learning convolutional neural network 摘要 在…

Python实现GA遗传算法优化BP神经网络分类模型(BP神经网络分类算法)项目实战

说明&#xff1a;这是一个机器学习实战项目&#xff08;附带数据代码文档视频讲解&#xff09;&#xff0c;如需数据代码文档视频讲解可以直接到文章最后获取。 1.项目背景 遗传算法&#xff08;Genetic Algorithm&#xff0c;GA&#xff09;最早是由美国的 John holland于20世…

青龙面板的安装和使用

玩nas除了看看电影&#xff0c;那肯定还得玩转docker&#xff0c;这期讲的就是青龙面板&#xff0c;一个跑脚本的神器。 GitHub地址&#xff1a;青龙面板 1.安装 你安装完docker那就很简单了&#xff0c;不懂可以看看我这篇博客docker安装 镜像源一定要搞&#xff0c;要不然…

bigemap工程工程行业应用

客户目前主要是需求为使用下载卫星图、等高线、水系、路网等等元素数据做线路规划图 其他信息 客户需要的图中还包含一些农作物以及需要在软件上标注带有箭头的线段&#xff08;不能满足&#xff09; 如下图&#xff1a; 使用场景&#xff1a; 目前主要为制图、规划线路等等…

1.1.2 SpringCloud 版本问题

目录 版本标识 版本类型 查看对应版本 版本兼容的权威——官网&#xff1a; 具体的版本匹配支持信息可以查看 总结 在将Spring Cloud集成到Spring Boot项目中时&#xff0c;确保选择正确的Spring Cloud版本和兼容性是非常重要的。由于Spring Cloud存在多个版本&#xff0c;因此…

力扣 509. 斐波那契数

题目来源&#xff1a;https://leetcode.cn/problems/fibonacci-number/description/ C题解1&#xff1a;根据题意&#xff0c;直接用递归函数。 class Solution { public:int fib(int n) {if(n 0) return 0;else if(n 1) return 1;else return(fib(n-1) fib(n-2));} }; C题…

socket 基础

Socket是什么呢&#xff1f; ① Socket通常也称作“套接字”&#xff0c;用于描述IP地址和端口&#xff0c;是一个通信链的句柄。应用程序通常通过“套接字”向网络发出请求或者应答网络请求。 ② Socket是连接运行在网络上的两个程序间的双向通信的端点。 ③ 网络通讯其实指…

【Go语言】Golang保姆级入门教程 Go初学者介绍chapter1

Golang 开山篇 Golang的学习方向 区块链研发工程师&#xff1a; 去中心化 虚拟货币 金融 Go服务器端、游戏软件工程师 &#xff1a; C C 处理日志 数据打包 文件系统 数据处理 很厉害 处理大并发 Golang分布式、云计算软件工程师&#xff1a;盛大云 cdn 京东 消息推送 分布式文…

【RabbitMQ】golang客户端教程2——工作队列

任务队列/工作队列 在上一个教程中&#xff0c;我们编写程序从命名的队列发送和接收消息。在这一节中&#xff0c;我们将创建一个工作队列&#xff0c;该队列将用于在多个工人之间分配耗时的任务。 工作队列&#xff08;又称任务队列&#xff09;的主要思想是避免立即执行某些…

pip安装lap出现问题

解决方法一 用conda安装&#xff0c;用以下命令&#xff1a; conda install -c conda-forge lap解决方法二 用pip安装&#xff0c;用以下命令&#xff1a; pip install gitgit://github.com/gatagat/lap.git文章目录 解决方法一解决方法二摘要YoloV8改进策略&#xff1a;基…

短视频矩阵源码

一、短视频矩阵源码搭建解析&#xff1a; 目录 一、短视频矩阵源码搭建解析&#xff1a; 二、短视频矩阵源码的开发路径分享&#xff1a; 三、短视频矩阵系统开发应具备哪些能力&#xff1f; 短视频技术开发能力&#xff1a; 开发人员应具备短视频相关技术能力&#xff0c…

Vcenter 创建 虚拟机配置 Thin Provision 模式 disk

介绍 在vCenter中选择虚拟磁盘格式通常也取决于您的需求和使用情况。 vSphere支持多种虚拟磁盘格式&#xff0c;以下是一些常见的格式&#xff1a; Thick Provision Lazy Zeroed&#xff1a;这是vSphere中的默认格式。它会预分配虚拟磁盘所需的存储空间&#xff0c;但只有在虚…