【C++心愿便利店】No.14---C++之探索list底层原理

文章目录

  • 前言
  • 一、list的介绍及使用
    • 1.1 list的介绍
    • 1.2 list的使用
      • 1.2.1 list的构造
      • 1.2.2 list iterator的使用
      • 1.2.3 list capacity
      • 1.2.4 list element access
      • 1.2.5 list modifiers
      • 1.2.6 list operations
      • 1.2.7 list的迭代器失效
  • 二、list的模拟实现
    • 2.1 定义一个结构体实现list的节点
    • 2.2 list的成员变量
    • 2.3 list迭代器的封装实现
      • 2.3.1 普通迭代器
      • 2.3.2 const迭代器
    • 2.4 list成员函数
      • 2.4.1 构造函数
      • 2.4.2 拷贝构造函数
      • 2.4.3 赋值运算符重载
      • 2.4.4 迭代器相关
      • 2.4.5 insert
      • 2.4.6 erase
      • 2.4.7 push_back()
      • 2.4.8 push_front()
      • 2.4.9 pop_back()
      • 2.4.10 pop_front()
      • 2.4.11 size()
      • 2.4.12 clear()
      • 2.4.13 析构函数
  • 三、list与vector的对比


前言

在这里插入图片描述

👧个人主页:@小沈YO.
😚小编介绍:欢迎来到我的乱七八糟小星球🌝
📋专栏:C++ 心愿便利店
🔑本章内容:list
记得 评论📝 +点赞👍 +收藏😽 +关注💞哦~


提示:以下是本篇文章正文内容,下面案例可供参考

一、list的介绍及使用

list的文档介绍

1.1 list的介绍

  • list是可以在常数范围内在任意位置进行插入和删除的序列式容器,并且该容器可以前后双向迭代。
  • list的底层是双向链表结构,双向链表中每个元素存储在互不相关的独立节点中,在节点中通过指针指向其前一个元素和后一个元素。
  • list与forward_list非常相似:最主要的不同在于forward_list是单链表,只能朝前迭代,已让其更简单高效。
  • 与其他的序列式容器相比(array,vector,deque),list通常在任意位置进行插入、移除元素的执行效率更好。
  • 与其他序列式容器相比,list和forward_list最大的缺陷是不支持任意位置的随机访问,比如:要访问list的第6个元素,必须从已知的位置(比如头部或者尾部)迭代到该位置,在这段位置上迭代需要线性的时间开销;list还需要一些额外的空间,以保存每个节点的相关联信息(对于存储类型较小元素的大list来说这可能是一个重要的因素)

1.2 list的使用

list中的接口比较多,此处类似,只需要掌握如何正确的使用,然后再去深入研究背后的原理,已达到可扩展
的能力。以下为list中一些常见的重要接口

1.2.1 list的构造

构造函数( (constructor))接口说明
list()构造空的list
list (size_type n, const value_type& val = value_type())构造的list中包含n个值为val的元素
list (InputIterator first, InputIterator last)用[first, last)区间中的元素构造list
list (const list& x)拷贝构造函数
void test_list1()
{list<int> l1;//构造空的listlist<int>l2(6, 6);//构造的list中包含n个值为val的元素list<int>l3(l2.begin(), l2.end());//用[first, last)区间中的元素构造listlist<int>l4(l3);//拷贝构造函数list<int>::iterator it = l2.begin();while (it != l2.end()){cout << *it << " ";it++;}cout << endl;for (auto e : l3){cout << e << " ";}cout << endl;for (auto e : l4){cout << e << " ";}cout << endl;
}

1.2.2 list iterator的使用

此处,大家可暂时将迭代器理解成一个指针,该指针指向list中的某个节点

函数声明接口说明
begin + end返回第一个元素的迭代器+返回最后一个元素下一个位置的迭代器
rbegin + rend返回第一个元素的reverse_iterator,即end位置,返回最后一个元素下一个位置的reverse_iterator,即begin位置
void test_list2()
{list<int> lt;lt.push_back(1);lt.push_back(2);lt.push_back(3);lt.push_back(4);lt.push_back(5);// 使用正向迭代器遍历打印lt中的元素// list<int>::iterator it = l.begin();   //两种写法都对auto it = lt.begin();                    while (it != lt.end()){cout << *it << " ";++it;}cout << endl;// 使用反向迭代器遍历打印lt中的元素// list<int>::reverse_iterator rit = l.rbegin();auto rit = lt.rbegin();while (rit != lt.rend()){cout << *rit << " ";++rit;}cout << endl;
}

【注意】

  1. begin与end为正向迭代器,对迭代器执行++操作,迭代器向后移动
  2. rbegin(end)与rend(begin)为反向迭代器,对迭代器执行++操作,迭代器向前移动
  3. 遍历链表只能使用迭代器和范围 for。

1.2.3 list capacity

函数声明接口说明
empty检测list是否为空,是返回true,否则返回false
size返回list中有效节点的个数

1.2.4 list element access

函数声明接口说明
front返回list的第一个节点中值的引用
back返回list的最后一个节点中值的引用

1.2.5 list modifiers

函数声明接口说明
push_front在list首元素前插入值为val的元素
pop_front删除list中第一个元素
push_back在list尾部插入值为val的元素
pop_back删除list中最后一个元素
insert在list position 位置中插入值为val的元素
erase删除list position位置的元素
swap交换两个list中的元素
clear清空list中的有效元素

1.2.6 list operations

函数声明接口说明
splice实现list拼接的功能,将list的内容部分或全部元素删除,拼插入到目的list。
remove删除特定值节点
unique对链表中的元素去重,要求必须有序
merge对两个有序的链表进行归并,得到一个有序的链表
sort对链表中的元素进行排序
reverse逆置

注意:链表排序只能使用 list 自身的 sort() 接口(其底层是利用归并排序原理),不能使用算法库的 sort,因为算法库中的 sort 底层是通过快排来实现的,快排涉及到三数取中,需要迭代器 - 迭代器,链表不能很好的支持。

void test_list3()
{list<int> lt;lt.push_back(1);lt.push_back(2);lt.push_back(3);lt.push_back(4);lt.push_back(5);for (auto e : lt){cout << e << " ";}cout << endl;lt.reverse();链表逆置可以使用 list 自身的接口,也可以使用算法库中的 reversefor (auto e : lt){cout << e << " ";}cout << endl;//sort(lt.begin(), lt.end());lt.sort();//默认升序< less//降序> greater//greater<int> gt;lt.sort(gt);lt.sort(greater<int>());//上面的两种写法都可以for (auto e : lt){cout << e << " ";}cout << endl;
}
————————————————————————————————————————————————————————————————————————————————
unique  ---	去重(一定要记得有序)
void test_list4()
{list<int> lt;lt.push_back(1);lt.push_back(3);lt.push_back(2);lt.push_back(3);lt.push_back(3);lt.push_back(2);lt.push_back(5);lt.push_back(5);for (auto e : lt){cout << e << " ";}cout << endl;lt.unique();for (auto e : lt){cout << e << " ";}cout << endl;
}

在这里插入图片描述

vector和list的效率比对:

虽然链表提供了排序接口,但是用链表对数据排序意义不大(当数据比较大时),效率太低了,更希望用 vector 来对数据进行排序 — 如下(具体可以通过对两者进行效率比对),但是数据较小时sort还是很有用的

//将li中的数据拷贝到vector
vector<int> v(lt.begin(),lt.end());
for (auto e : v)
{cout << e << " ";
}
cout << endl;
//排序
sort(v.begin(), v.end());
for (auto e : v)
{cout << e << " ";
}
cout << endl;
//拷贝回lt
lt.assign(v.begin(), v.end());
for (auto e : lt)
{cout << e << " ";
}
cout << endl;——————————————————————————————————————————————————————————————————————————————————————————
//对两者进行效率比对
void TestSort()
{srand(time(0));const int N = 5000000;vector<int> v;list<int> lt;v.reserve(N);//提前开好空间for (int i = 0; i < N; i++){auto e = rand();v.push_back(e);lt.push_back(e);}比较vector 和 list 的排序int begin1 = clock();sort(v.begin(), v.end());int end1 = clock();int begin2 = clock();lt.sort();int end2 = clock();printf("vector sort:%d\n", end1 - begin1);printf("list sort:%d\n", end2 - begin2);
}
小拓展:

迭代器的这种分类方式,是由容器的底层结构来决定的

迭代器类型(性质上分类)功能 及 示例
单向(InputIterator)支持 ++ (单链表、哈希表)
双向(BidirectionalItreator)支持 ++/- - (双向链表、红黑树(map和set))
随机(RandomAccessIterator)支持 ++ / - - / + / - (vector、string、deque)

可以看到算法库里面的sort:迭代器类型是随机(RandomAccessIterator)类型的所以不可以用算法库中的sort,以list中的reverse为例:迭代器是双向(BidirectionalItreator)类型的。
在这里插入图片描述

1.2.7 list的迭代器失效

list中insert 插入元素并不会导致迭代器失效, vector 中的 insert插入元素导致迭代器失效是因为,vector 中的 insert 会去扩容挪动数据,而 list 中的 insert 不会进行扩容挪动数据
前面说过,此处大家可将迭代器暂时理解成类似于指针迭代器失效即迭代器所指向的节点的无效即该节点被删除了。因为list的底层结构为带头结点的双向循环链表,因此在list中进行插入时是不会导致list的迭代器失效的,只有在删除时才会失效,并且失效的只是指向被删除节点的迭代器,其他迭代器不会受到影响

void TestListIterator1()
{int array[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 0 };list<int> l(array, array+sizeof(array)/sizeof(array[0]));auto it = l.begin();while (it != l.end()){//erase()函数执行后,it所指向的节点已被删除,因此it无效,在下一次使用it时,必须先给其赋值l.erase(it); ++it;}
}
——————————————————————————————————————————————————————————————————————————————
// 改正
void TestListIterator()
{int array[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 0 };list<int> l(array, array+sizeof(array)/sizeof(array[0]));auto it = l.begin();while (it != l.end()){l.erase(it++); // it = l.erase(it);}
}

二、list的模拟实现

2.1 定义一个结构体实现list的节点

template<class T>
struct list_node//struct默认是公有的不受访问限定符限制
{T _data;list_node<T>*_next;list_node<T>*_prev;list_node(const T& x=T())//拷贝构造:_data(x),_next(nullptr),_prev(nullptr){}
};

2.2 list的成员变量

template<class T>
class list
{typedef list_node<T> Node;
public:private:Node* _head;
};

2.3 list迭代器的封装实现

list 的迭代器不再使用原生指针因为:

  • 首先如果list 的迭代器使用原生指针,那对迭代器解引用得到的是一个节点,但是我们是希望对迭代器解引用可以得到节点里面存储的元素数据
  • 其次 list 在底层的物理空间并不连续,如果使用原生指针作为 list 的迭代器,那对迭代器执行 ++ 操作,并不会让迭代器指向下一个节点。
    所以需要对 list 的迭代器进行封装并对一些运算符进行重载以实现迭代器的效果。

2.3.1 普通迭代器

//迭代器的封装和运算符重载
template<class T>
struct __list_iterator
{typedef list_node<T>Node;typedef __list_iterator<T> self;Node* _node;__list_iterator(Node* node)//构造:_node(node){}self& operator++()//前置++{_node = _node->_next;return *this;}self operator++(int)//后置++{self tmp(*this);_node = _node->_next;return tmp;}self& operator--()//前置--{_node = _node->_prev;return *this;}self& operator--(int)//后置--{self tmp(*this);_node = _node->_prev;return tmp;}T& operator*()//因为要修改数据所以返回数据的&{return _node->_data;}bool operator==(const self& s){return _node == s._node;}bool operator!=(const self& s){return _node !=s._node ;}
};

迭代器不需要实现析构函数、拷贝构造函数、赋值运算符重载函数,直接使用默认生成的就可以(所以浅拷贝就足够了不需要深拷贝)

2.3.2 const迭代器

上述实现了普通迭代器,那 const 迭代器该怎样实现呢?
所谓const 迭代器本质:是限制迭代器指向的内容不能修改,而 const 迭代器自身可以修改,它可以指向其他节点。
const iterator这种写法,const 限制的就是迭代器本身,会让迭代器无法实现 ++ 等操作(所以const迭代器不是对普通迭代器+const修饰)。

为了实现const迭代器有两种方式:

  • 单独写一个 _list_const_iterator 的类
template<class T>
struct __list_const_iterator
{typedef list_node<T>Node;typedef __list_const_iterator<T> self;Node* _node;__list_const_iterator(Node* node):_node(node){}self& operator++(){_node = _node->_next;return *this;}self operator++(int){self tmp(*this);_node = _node->_next;return tmp;}self& operator--(){_node = _node->_prev;return *this;}self& operator--(int){			self tmp(*this);			_node = _node->_prev;return tmp;}const T& operator*(){return _node->_data;}const T* operator->(){return &_node->_data;}bool operator==(const self& s){return _node == s._node;}bool operator!=(const self& s){return _node != s._node;}
};
  • 在普通迭代器的基础上,再传递一个模板参数,让编译器来生成
template<class T,class Ref,class Ptr>
struct __list_iterator
{typedef list_node<T>Node;typedef __list_iterator<T,Ref,Ptr> self;Node* _node;__list_iterator(Node* node):_node(node){}self& operator++(){_node = _node->_next;return *this;}self operator++(int){self tmp(*this);_node = _node->_next;return tmp;}self& operator--(){_node = _node->_prev;return *this;}self& operator--(int){self tmp(*this);_node = _node->_prev;return tmp;}Ref operator*(){return _node->_data;}Ptr operator->(){return &_node->_data;}bool operator==(const self& s) {return _node == s._node;}bool operator!=(const self& s){return _node != s._node;}
};

2.4 list成员函数

2.4.1 构造函数

list 本质上是一个带头双向循环链表。

void empty_init()
{_head = new Node;//这里需要传个值所以在拷贝构造的地方给个匿名对象_head->_next = _head;_head->_prev = _head;
}
list()
{empty_init();
}

2.4.2 拷贝构造函数

list(const list<T>& lt)//--->lt是一个const类型的
{empty_init();for (auto e : lt){push_back(e);}
}

2.4.3 赋值运算符重载

//两种写法:
list<int>& operator=(const list<int>& lt)
{if(this!=&lt){clear();//释放lt3;--->不清哨兵位的头结点可以继续插入for (auto e : lt)//遍历lt1{push_back(e);//把lt1中的数据插入到lt3}}return *this;
}
____________________________________________________________________________________
void swap(list<T>& lt)
{std::swap(_head,lt._head);//交换头指针std::swap(_size, lt._size);
}
list<int>& operator=(list<int>& lt)
{swap(lt);return *this;
}

2.4.4 迭代器相关

//普通迭代器:
iterator begin()
{return _head->_next;
}
iterator end()
{return _head;
}
//const迭代器:
const_iterator begin()const
{return _head->_next;
}
const_iterator end()const 
{return _head;
}

2.4.5 insert

iterator insert(iterator pos, const T& val)
{Node* cur = pos._node;Node* prev = cur->_prev;Node* newnode = new Node(val);prev->_next = newnode;newnode->_prev = prev;newnode->_next = cur;cur->_prev = newnode;_size++;return iterator(newnode);
}

2.4.6 erase

iterator erase(iterator pos)
{Node* cur = pos._node;Node* prev = cur->_prev;Node* next = cur->_next;delete cur;cur = nullptr;prev->_next = next;next->_prev = prev;_size--;return iterator(next);//返回pos的下一个位置
}

2.4.7 push_back()

void push_back(const T& x)
{
//找尾Node* tail = _head->_prev;
//插入节点	Node* newnode = new Node(x);tail->_next = newnode;newnode->_prev = tail;newnode->_next = _head;_head->_prev = newnode;
}
————————————————————————————————————————————————————————————————————————————————
//直接复用insert
void push_back(const T& x)
{insert(end(),x);
}

2.4.8 push_front()

void push_front(const T& x)
{insert(begin(), x);
}

2.4.9 pop_back()

void pop_back(const T& x)
{erase(--end());
}

2.4.10 pop_front()

void pop_front(const T& x)
{erase(begin());
}

2.4.11 size()

size_t size()
{return _size;
}

2.4.12 clear()

void clear()
{iterator it = begin();while (it != end()){it = erase(it);//返回下一个位置的迭代器}
}

2.4.13 析构函数

~list()
{clear();delete _head;_head = nullptr;
}

三、list与vector的对比

在这里插入图片描述


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/153912.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

深入分析TaskView源码之触摸相关

问题背景 hi&#xff0c;粉丝朋友们&#xff1a; 大家好&#xff01;android 10以后TaskView作为替代ActivityView的容器&#xff0c;在课程的分屏pip自由窗口专题也进行了相关的详细介绍分析。 这里再补充一下相关的TaskView和桌面内嵌情况下的触摸分析 主要问题点&#xff…

【经验分享】Ubuntu如何设置swap交换

我的Linux小鸡内存只有512兆&#xff0c;经常爆内存&#xff0c;导致很多应用没有办法一直正常运行&#xff0c;可以通过设置swap来缓解一下&#xff0c;虽然和内存的速度无法媲美&#xff0c;但是能一定程度缓解一下问题 文章目录 1. 创建一个交换文件2. 设置正确的权限3. 设置…

腾讯云标准型s5和s6有什么区别?CPU处理器有差异吗?

腾讯云服务器CVM标准型S5和S6有什么区别&#xff1f;都是标准型云服务器&#xff0c;标准型S5是次新一代云服务器规格&#xff0c;标准型S6是最新一代的云服务器&#xff0c;S6实例的CPU处理器主频性能要高于S5实例&#xff0c;同CPU内存配置下的标准型S6实例要比S5实例性能更好…

【开源】基于JAVA的社区买菜系统

项目编号&#xff1a; S 011 &#xff0c;文末获取源码。 \color{red}{项目编号&#xff1a;S011&#xff0c;文末获取源码。} 项目编号&#xff1a;S011&#xff0c;文末获取源码。 目录 一、摘要1.1 项目介绍1.2 项目录屏 二、系统设计2.1 功能模块设计2.1.1 数据中心模块2.1…

OpenLDAP配置web管理界面PhpLDAPAdmin服务-centos9stream

之前已经发了一篇关于centos9下面配置openldap多主高可用集群的内容&#xff0c;不会配置ldap集群的请参考&#xff1a;服务器集群配置LDAP统一认证高可用集群&#xff08;配置tsl安全链接&#xff09;-centos9stream-openldap2.6.2-CSDN博客 这里跟着前篇文章详细说明如何配置…

RESTful API 设计指南——为什么要用(上)

引言 在上一篇中&#xff1a;RESTful API 设计指南——开篇词 我们介绍了几个十分有争议的案例&#xff1a; 所有的接口都使用Post请求不管成功还是失败&#xff0c;HTTP状态码都返回200API命名千奇百怪 本章我们来深入分析一下&#xff0c;为什么不要像案例中所说的那样干…

Vscode GDB 查看内存的值

在VSCode的GDB图形界面中&#xff0c;你可以使用"调试控制台(Debug Console)"来查看malloc返回的地址里的值。以下是具体的步骤&#xff1a; 首先&#xff0c;你需要在你的代码中设置一个断点&#xff0c;这个断点应该在malloc函数调用之后&#xff0c;这样你可以获…

JAXB:用XmlElement注解复杂类型的Java属性,来产生多层嵌套的xml元素

例如&#xff0c;下面这段请求的xml代码&#xff0c;在元素body下面又多了一层&#xff0c;嵌套了4个元素&#xff1a; <?xml version"1.0" encoding"UTF-8"?><request><reqtype>04</reqtype><secret>test</secret>…

电机应用开发-编码器的使用

编码器 增量式编码器倍频技术 增量式编码器输出的常见脉冲波形信号形式&#xff1a; 占空比为50%的方波&#xff0c;通道A和通道B相位差为90。 正弦波的模拟信号&#xff0c;通道A和通道B相位差为90。 对于占空比为50%的方波&#xff0c;通道A和通道B相位差为90。先以下图为例…

C++ LibCurl实现Web隐藏目录扫描

LibCurl是一个开源的免费的多协议数据传输开源库&#xff0c;该框架具备跨平台性&#xff0c;开源免费&#xff0c;并提供了包括HTTP、FTP、SMTP、POP3等协议的功能&#xff0c;使用libcurl可以方便地进行网络数据传输操作&#xff0c;如发送HTTP请求、下载文件、发送电子邮件等…

【docker下安装jenkins】(一)

目的&#xff1a;在Linux操作系统&#xff08;x86_64)下&#xff0c;使用docker部署jenkins&#xff0c;python使用压缩包安装 安装jenkins的步骤 &#xff11;、编排jenkins的docker-compose.yml文件 说明&#xff1a;这里遇到部署jenkins后&#xff0c;占用内存8G,所以重新…

HarmonyOS第一课-对比Kotlin,快速入门TypeScript

编程语言简介 基础类型 1. 布尔值 TypeScript 和 Kotlin: 两者都有 boolean 类型&#xff0c;用于表示 true 或 false。 ts示例&#xff1a; let isDone:boolean falsekotlin示例&#xff1a; val isDone: Boolean false2. 数字 TypeScript: 有 number 类型&#xff0c…

hadoop 配置历史服务器 开启历史服务器查看 hadoop (十)

1. 配置了三台服务器&#xff0c;hadoop22, hadoop23, hadoop24 2. hadoop文件路径: /opt/module/hadoop-3.3.4 3. hadoop22机器配置历史服务器的配置文件&#xff1a; 文件路径&#xff1a;/opt/module/hadoop-3.3.4/etc/hadoop 文件名称&#xff1a;mapred-size.xml 新增历…

帮我想几个关于实人认证API的中文文章标题

引言 随着信息时代的迅速发展&#xff0c;数据变得愈加庞大和复杂。在这个大数据的时代&#xff0c;企业面临着海量信息的管理和利用挑战。为了更有效地获取并利用数据&#xff0c;企业信息模糊搜索API成为了企业数据智能引擎的一部分&#xff0c;为企业提供了精准的企业列表检…

RK3588产测软件介绍

1. 简介 本公司研发的产测软件是用于在量产的过程中快速地甄别产品功能和器件的好坏&#xff0c;即重点 FCT&#xff08;Functional Test&#xff09;测试&#xff0c;进而提高生产效率和检测的准确性。 2. 产测软件介绍 QT开发的ARM平台产测图形化软件&#xff0c;一键开启傻…

【问题处理】WPS提示不能启动此对象的源应用程序如何处理?

哈喽&#xff0c;大家好&#xff0c;我是雷工&#xff01; 最近在用WPS打开word文件中&#xff0c;插入的Excel附件时&#xff0c;无法打开&#xff0c;提示&#xff1a;“不能启动此对象的源应用程序”。 经过上网查找处理办法&#xff0c;尝试解决&#xff0c;现将解决过程记…

Linux socket编程(4):服务端fork之僵尸进程的处理

在上一节利用fork实现服务端与多个客户端建立连接中&#xff0c;我们使用fork函数来实现服务端既可以accept新的客户端连接请求&#xff0c;又可以接收已连接上的客户端发来的消息。但在Linux中&#xff0c;在子进程终止后&#xff0c;父进程需要处理该子进程的终止状态&#x…

【开源】基于Vue.js的车险自助理赔系统的设计和实现

项目编号&#xff1a; S 018 &#xff0c;文末获取源码。 \color{red}{项目编号&#xff1a;S018&#xff0c;文末获取源码。} 项目编号&#xff1a;S018&#xff0c;文末获取源码。 目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 数据中心模块2.2 角色管理模块2.3 车…

[GFCTF 2021]wordy 编写去花IDAPYTHON

首先查壳 发现没有东西 然后放入ida 发现没有main并且软件混乱 发现这里1144的地方 出错 IDA无法识别数据 报错内容是EBFF 机器码 这里看了wp知道是很常见的花指令 所以我们现在开始去花 这里因为我们需要取出 EBFF 下面的地址也都是 EBFF 所以工作量大 使用IDApython脚本即…

EasyRecovery2024最新永久破解版本安装包下载

当我们处理重要的文件数据时&#xff0c;遇到突然停电导致数据来不及保存&#xff0c;再次打开电脑后&#xff0c;此前处理的数据可能丢失&#xff0c;这无疑会影响我们的工作进度&#xff0c;数据恢复软件在此时就派上用场&#xff0c;那么下面就来具体介绍EasyRecovery软件的…