文章目录
- 一、题目
- 二、题解
一、题目
Given the root of a binary search tree and the lowest and highest boundaries as low and high, trim the tree so that all its elements lies in [low, high]. Trimming the tree should not change the relative structure of the elements that will remain in the tree (i.e., any node’s descendant should remain a descendant). It can be proven that there is a unique answer.
Return the root of the trimmed binary search tree. Note that the root may change depending on the given bounds.
Example 1:
Input: root = [1,0,2], low = 1, high = 2
Output: [1,null,2]
Example 2:
Input: root = [3,0,4,null,2,null,null,1], low = 1, high = 3
Output: [3,2,null,1]
Constraints:
The number of nodes in the tree is in the range [1, 104].
0 <= Node.val <= 104
The value of each node in the tree is unique.
root is guaranteed to be a valid binary search tree.
0 <= low <= high <= 104
二、题解
/*** Definition for a binary tree node.* struct TreeNode {* int val;* TreeNode *left;* TreeNode *right;* TreeNode() : val(0), left(nullptr), right(nullptr) {}* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}* };*/
class Solution {
public:TreeNode* trimBST(TreeNode* root, int low, int high) {if(!root) return nullptr;if(root->val < low) return trimBST(root->right,low,high);else if(root->val > high) return trimBST(root->left,low,high);root->left = trimBST(root->left,low,high);root->right = trimBST(root->right,low,high);return root;}
};