redis主从复制哨兵Cluster

目录

前言

一、模式介绍

1.1 主从复制

1.2 哨兵

1.3 集群

二、主从复制

2.1  主从复制的作用

2.2 主从复制流程

2.3 搭建Redis 主从复制

三、Redis 哨兵模式

3.1 哨兵模式原理

 3.2 哨兵模式的作用

3.3 哨兵组成结构

3.4 哨兵故障转移机制

3.5 搭建Redis 哨兵模式

四、Redis Rluster群集模式

4.1 集群的作用

4.2 Redis集群的数据分片

4.3 Redis集群的主从复制模型

4.4 搭建Redis 群集模式


前言

redis群集有三种模式,分别是主从同步/复制、哨兵模式、Cluster,本文会讲解一下三种模式的工作方式,以及如何搭建cluster群集

一、模式介绍

1.1 主从复制

  • 主从复制是高可用Redis的基础,哨兵和集群都是在主从复制基础上实现高可用的。主从复制主要实现了数据的多机备份,以及对于读操作的负载均衡和简单的故障恢复。
  • 缺陷:故障恢复无法自动化;写操作无法负载均衡;存储能力受到单机的限制。
     

1.2 哨兵

  • 在主从复制的基础上,哨兵实现了自动化的故障恢复。
  • 缺陷:写操作无法负载均衡;存储能力受到单机的限制;哨兵无法对从节点进行自动故障转移,在读写分离场景下,从节点故障会导致读服务不可用,需要对从节点做额外的监控、切换操作。
     

1.3 集群

  • 通过集群,Redis解决了写操作无法负载均衡,以及存储能力受到单机限制的问题,实现了较为完善的高可用方案。

二、主从复制

  • 是指将一台Redis服务器的数据,复制到其他的Redis服务器。前者称为主节点(Master),后者称为从节点(Slave);数据的复制是单向的,只能由主节点到从节点。
  • 默认情况下,每台Redis服务器都是主节点;且一个主节点可以有多个从节点(或没有从节点),但一个从节点只能有一个主节点。

 

2.1  主从复制的作用

●数据冗余:主从复制实现了数据的热备份,是持久化之外的一种数据冗余方式。
●故障恢复:当主节点出现问题时,可以由从节点提供服务,实现快速的故障恢复;实际上是一种服务的冗余。
●负载均衡:在主从复制的基础上,配合读写分离,可以由主节点提供写服务,由从节点提供读服务(即写Redis数据时应用连接主节点,读Redis数据时应用连接从节点),分担服务器负载;尤其是在写少读多的场景下,通过多个从节点分担读负载,可以大大提高Redis服务器的并发量。
●高可用基石:除了上述作用以外,主从复制还是哨兵和集群能够实施的基础,因此说主从复制是Redis高可用的基础。

2.2 主从复制流程

(1)若启动一个Slave机器进程,则它会向Master机器发送一个“sync command”命令,请求同步连接
(2)无论是第一次连接还是重新连接,Master机器都会启动一个后台进程,将数据快照保存到数据文件中(执行rdb操作),同时Master还会记录修改数据的所有命令并缓存在数据文件中。
(3)后台进程完成缓存操作之后,Master机器就会向Slave机器发送数据文件,Slave端机器将数据文件保存到硬盘上,然后将其加载到内存中,接着Master机器就会将修改数据的所有操作一并发送给Slave端机器。若Slave出现故障导致宕机,则恢复正常后会自动重新连接。
(4)Master机器收到Slave端机器的连接后,将其完整的数据文件发送给Slave端机器,如果Mater同时收到多个Slave发来的同步请求,则Master会在后台启动一个进程以保存数据文件,然后将其发送给所有的Slave端机器,确保所有的Slave端机器都正常。

2.3 搭建Redis 主从复制

Master节点: 192.168.181.100
Slave1节点: 192.168.181.101
Slave2节点: 192.168.181.102systemctl stop firewalld
setenforce 0-----安装 Redis-----
yum install -y gcc gcc-c++ maketar zxvf redis-5.0.7.tar.gz -C /opt/wget -p /opt http://download.redis.io/releases/redis-5.0.9.tar.gz
cd /opt/redis-5.0.7/
make
make PREFIX=/usr/local/redis installcd /opt/redis-5.0.7/utils
./install_server.sh
......
Please select the redis executable path [/usr/local/bin/redis-server] /usr/local/redis/bin/redis-server  	ln -s /usr/local/redis/bin/* /usr/local/bin/-----修改 Redis 配置文件(Master节点操作)-----
vim /etc/redis/6379.conf   redis.conf
bind 0.0.0.0						#70行,修改监听地址为0.0.0.0
daemonize yes						#137行,开启守护进程
logfile /var/log/redis_6379.log		#172行,指定日志文件目录
dir /var/lib/redis/6379				#264行,指定工作目录
appendonly yes						#700行,开启AOF持久化功能/etc/init.d/redis_6379 restart-----修改 Redis 配置文件(Slave节点操作)-----
vim /etc/redis/6379.conf
bind 0.0.0.0						#70行,修改监听地址为0.0.0.0
daemonize yes						#137行,开启守护进程
logfile /var/log/redis_6379.log		#172行,指定日志文件目录
dir /var/lib/redis/6379				#264行,指定工作目录		#288行,指定要同步的Master节点IP和端口
replicaof 192.168.181.100 6379
appendonly yes						#700行,开启AOF持久化功能/etc/init.d/redis_6379 restart-----验证主从效果-----
在Master节点上看日志:
tail -f /var/log/redis_6379.log 
Replica 192.168.181.101:6379 asks for synchronization
Replica 192.168.181.102:6379 asks for synchronization在Master节点上验证从节点:
redis-cli info replication
# Replication
role:master
connected_slaves:2
slave0:ip=192.168.181.101,port=6379,state=online,offset=1246,lag=0
slave1:ip=192.168.181.102,port=6379,state=online,offset=1246,lag=1

三、Redis 哨兵模式

  • 主从切换技术的方法是:当服务器宕机后,需要手动一台从机切换为主机,这需要人工干预,不仅费时费力而且还会造成一段时间内服务不可用。为了解决主从复制的缺点,就有了哨兵机制。
  • 哨兵的核心功能:在主从复制的基础上,哨兵引入了主节点的自动故障转移。

3.1 哨兵模式原理

哨兵(sentinel):是一个分布式系统,用于对主从结构中的每台服务器进行监控,当出现故障时通过投票机制选择新的 Master并将所有slave连接到新的 Master。所以整个运行哨兵的集群的数量不得少于3个节点。

 3.2 哨兵模式的作用

监控:哨兵会不断地检查主节点和从节点是否运作正常。

自动故障转移:当主节点不能正常工作时,哨兵会开始自动故障转移操作,它会将失效主节点的其中一个从节点升级为新的主节点,并让其它从节点改为复制新的主节点。

通知(提醒):哨兵可以将故障转移的结果发送给客户端。

3.3 哨兵组成结构

哨兵节点:哨兵系统由一个或多个哨兵节点组成,哨兵节点是特殊的redis节点,不存储数据。
数据节点:主节点和从节点都是数据节点。

3.4 哨兵故障转移机制

1.由哨兵节点定期监控发现主节点是否出现了故障
每个哨兵节点每隔1秒会向主节点、从节点及其它哨兵节点发送一次ping命令做一次心跳检测。如果主节点在一定时间范围内不回复或者是回复一个错误消息,那么这个哨兵就会认为这个主节点主观下线了(单方面的)。当超过半数哨兵节点认为该主节点主观下线了,这样就客观下线了。

2.当主节点出现故障,此时哨兵节点会通过Raft算法(选举算法)实现选举机制共同选举出一个哨兵节点为leader,来负责处理主节点的故障转移和通知。所以整个运行哨兵的集群的数量不得少于3个节点。

3.由leader哨兵节点执行故障转移,过程如下:
●将某一个从节点升级为新的主节点,让其它从节点指向新的主节点;
●若原主节点恢复也变成从节点,并指向新的主节点;
●通知客户端主节点已经更换。

需要特别注意的是,客观下线是主节点才有的概念;如果从节点和哨兵节点发生故障,被哨兵主观下线后,不会再有后续的客观下线和故障转移操作。

#主节点的选举:

1.过滤掉不健康的(已下线的),没有回复哨兵 ping 响应的从节点。
2.选择配置文件中从节点优先级配置最高的。(replica-priority,默认值为100)
3.选择复制偏移量最大,也就是复制最完整的从节点。

哨兵的启动依赖于主从模式,所以须把主从模式安装好的情况下再去做哨兵模式

3.5 搭建Redis 哨兵模式

Master节点:192.168.181.100
Slave1节点:192.168.181.101
Slave2节点:192.168.181.102systemctl stop firewalld
setenforce 0-----修改 Redis 哨兵模式的配置文件(所有节点操作)-----
vim /opt/redis-5.0.7/sentinel.conf
protected-mode no								#17行,关闭保护模式
port 26379										#21行,Redis哨兵默认的监听端口
daemonize yes									#26行,指定sentinel为后台启动
logfile "/var/log/sentinel.log"					#36行,指定日志存放路径
dir "/var/lib/redis/6379"						#65行,指定数据库存放路径
sentinel monitor mymaster 192.168.181.100 6379 2	#84行,修改 指定该哨兵节点监控192.168.181.100:6379这个主节点,该主节点的名称是mymaster,最后的2的含义与主节点的故障判定有关:至少需要2个哨兵节点同意,才能判定主节点故障并进行故障转移
sentinel down-after-milliseconds mymaster 30000	#113行,判定服务器down掉的时间周期,默认30000毫秒(30秒)
sentinel failover-timeout mymaster 180000		#146行,故障节点的最大超时时间为180000(180秒)-----启动哨兵模式-----
先启master,再启slave
cd /opt/redis-5.0.7/
redis-sentinel sentinel.conf &-----查看哨兵信息-----
redis-cli -p 26379 info Sentinel
# Sentinel
sentinel_masters:1
sentinel_tilt:0
sentinel_running_scripts:0
sentinel_scripts_queue_length:0
sentinel_simulate_failure_flags:0
master0:name=mymaster,status=ok,address=192.168.181.100:6379,slaves=2,sentinels=3-----故障模拟-----
#查看redis-server进程号:
ps -ef | grep redis
root      57031      1  0 15:20 ?        00:00:07 /usr/local/bin/redis-server 0.0.0.0:6379
root      57742      1  1 16:05 ?        00:00:07 redis-sentinel *:26379 [sentinel]
root      57883  57462  0 16:17 pts/1    00:00:00 grep --color=auto redis#杀死 Master 节点上redis-server的进程号
kill -9 57031			#Master节点上redis-server的进程号#验证结果
tail -f /var/log/sentinel.log
57742:X 07 Aug 2020 16:19:21.170 # +failover-state-select-slave master mymaster 192.168.80.11 6379
57742:X 07 Aug 2020 16:19:21.170 # -sdown slave 192.168.80.12:6379 192.168.80.12 6379 @ mymaster 192.168.80.11 6379
57742:X 07 Aug 2020 16:19:21.272 # +selected-slave slave 192.168.80.12:6379 192.168.80.12 6379 @ mymaster 192.168.80.11 6379
57742:X 07 Aug 2020 16:19:21.272 * +failover-state-send-slaveof-noone slave 192.168.80.12:6379 192.168.80.12 6379 @ mymaster 192.168.80.11 6379
57742:X 07 Aug 2020 16:19:21.338 * +failover-state-wait-promotion slave 192.168.80.12:6379 192.168.80.12 6379 @ mymaster 192.168.80.11 6379
57742:X 07 Aug 2020 16:19:21.402 # -failover-abort-slave-timeout master mymaster 192.168.80.11 6379
57742:X 07 Aug 2020 16:19:21.799 # -sdown master mymaster 192.168.80.11 6379
57742:X 07 Aug 2020 16:19:21.826 # +new-epoch 41
57742:X 07 Aug 2020 16:19:21.827 # +vote-for-leader b12178afd9f862e0ead00763c2c7f1ae7f5de22e 41
57742:X 07 Aug 2020 16:19:31.137 * +convert-to-slave slave 192.168.80.12:6379 192.168.80.12 6379 @ mymaster 192.168.80.11 63792.redis-cli -p 26379 INFO Sentinel
# Sentinel
sentinel_masters:1
sentinel_tilt:0
sentinel_running_scripts:0
sentinel_scripts_queue_length:0
sentinel_simulate_failure_flags:0
master0:name=mymaster,status=ok,address=192.168.181.101:6379,slaves=2,sentinels=3

四、Redis Rluster群集模式

  • 集群,即Redis Cluster,是Redis 3.0开始引入的分布式存储方案
  • 集群由多个节点(Node)组成,Redis的数据分布在这些节点中。集群中的节点分为主节点和从节点:只有主节点负责读写请求和集群信息的维护;从节点只进行主节点数据和状态信息的复制。

4.1 集群的作用

(1)数据分区:数据分区(或称数据分片)是集群最核心的功能。
集群将数据分散到多个节点,一方面突破了Redis单机内存大小的限制,存储容量大大增加;另一方面每个主节点都可以对外提供读服务和写服务,大大提高了集群的响应能力。
Redis单机内存大小受限问题,在介绍持久化和主从复制时都有提及;例如,如果单机内存太大,bgsave和bgrewriteaof的fork操作可能导致主进程阻塞,主从环境下主机切换时可能导致从节点长时间无法提供服务,全量复制阶段主节点的复制缓冲区可能溢出。

(2)高可用:集群支持主从复制和主节点的自动故障转移(与哨兵类似);当任一节点发生故障时,集群仍然可以对外提供服务。

4.2 Redis集群的数据分片

  • Redis集群引入了哈希槽的概念
  • Redis集群有16384个哈希槽(编号0-16383)
  • 集群的每个节点负责一部分哈希槽
  • 每个Key通过CRC16校验后对16384取余来决定放置哪个哈希槽,通过这个值,去找到对应的插槽所对应的节点,然后直接自动跳转到这个对应的节点上进行存取操作

#以3个节点组成的集群为例:
节点A包含0到5460号哈希槽
节点B包含5461到10922号哈希槽
节点C包含10923到16383号哈希槽

4.3 Redis集群的主从复制模型

  • 集群中具有A、B、C三个节点,如果节点B失败了,整个集群就会因缺少5461-10922这个范围的槽而不可以用。
  • 为每个节点添加一个从节点A1、B1、C1整个集群便有三个Master节点和三个slave节点组成,在节点B失败后,集群选举B1位为的主节点继续服务。当B和B1都失败后,集群将不可用。

4.4 搭建Redis 群集模式

redis的集群一般需要6个节点,3主3从。方便起见,这里所有节点在同一台服务器上模拟:
以端口号进行区分:3个主节点端口号:6001/6002/6003,对应的从节点端口号:6004/6005/6006。

cd /etc/redis/
mkdir -p redis-cluster/redis600{1..6}for i in {1..6}
do
cp /opt/redis-5.0.7/redis.conf /etc/redis/redis-cluster/redis600$i
cp /opt/redis-5.0.7/src/redis-cli /opt/redis-5.0.7/src/redis-server /etc/redis/redis-cluster/redis600$i
done#开启群集功能:
#其他5个文件夹的配置文件以此类推修改,注意6个端口都要不一样。
cd /etc/redis/redis-cluster/redis6001
vim redis.conf
#bind 127.0.0.1							#69行,注释掉bind 项,默认监听所有网卡
protected-mode no						#88行,修改,关闭保护模式
port 6001								#92行,修改,redis监听端口,
daemonize yes							#136行,开启守护进程,以独立进程启动
cluster-enabled yes						#832行,取消注释,开启群集功能
cluster-config-file nodes-6001.conf		#840行,取消注释,群集名称文件设置
cluster-node-timeout 15000				#846行,取消注释群集超时时间设置
appendonly yes							#700行,修改,开启AOF持久化#启动redis节点
分别进入那六个文件夹,执行命令:redis-server redis.conf ,来启动redis节点
cd /etc/redis/redis-cluster/redis6001
redis-server redis.conffor d in {1..6}
do
cd /etc/redis/redis-cluster/redis600$d
redis-server redis.conf
doneps -ef | grep redis#启动集群
redis-cli --cluster create 127.0.0.1:6001 127.0.0.1:6002 127.0.0.1:6003 127.0.0.1:6004 127.0.0.1:6005 127.0.0.1:6006 --cluster-replicas 1#六个实例分为三组,每组一主一从,前面的做主节点,后面的做从节点。下面交互的时候 需要输入 yes 才可以创建。
--replicas 1 表示每个主节点有1个从节点。#测试群集
redis-cli -p 6001 -c					#加-c参数,节点之间就可以互相跳转
127.0.0.1:6001> cluster slots			#查看节点的哈希槽编号范围
1) 1) (integer) 54612) (integer) 10922									#哈希槽编号范围3) 1) "127.0.0.1"2) (integer) 6003									#主节点IP和端口号3) "fdca661922216dd69a63a7c9d3c4540cd6baef44"4) 1) "127.0.0.1"2) (integer) 6004									#从节点IP和端口号3) "a2c0c32aff0f38980accd2b63d6d952812e44740"
2) 1) (integer) 02) (integer) 54603) 1) "127.0.0.1"2) (integer) 60013) "0e5873747a2e26bdc935bc76c2bafb19d0a54b11"4) 1) "127.0.0.1"2) (integer) 60063) "8842ef5584a85005e135fd0ee59e5a0d67b0cf8e"
3) 1) (integer) 109232) (integer) 163833) 1) "127.0.0.1"2) (integer) 60023) "816ddaa3d1469540b2ffbcaaf9aa867646846b30"4) 1) "127.0.0.1"2) (integer) 60053) "f847077bfe6722466e96178ae8cbb09dc8b4d5eb"127.0.0.1:6001> set name zhangsan
-> Redirected to slot [5798] located at 127.0.0.1:6003
OK127.0.0.1:6001> cluster keyslot name					#查看name键的槽编号redis-cli -p 6004 -c
127.0.0.1:6004> keys *							#对应的slave节点也有这条数据,但是别的节点没有
1) "name"

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/15310.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

科技项目验收测试:验证软件产品功能与性能的有效手段

科技项目验收测试是验证软件产品功能与性能的重要手段,在项目开发中起到了至关重要的作用。本文将从产品质量、需求验证、性能测试等方面,探讨科技项目验收测试的有效手段。 1、产品质量保证是验收测试的核心 科技项目验收测试的核心目标是验证软件产品…

xshell连接Windows中通过wsl安装的linux子系统-Ubuntu 22.04

xshell连接Windows中通过wsl安装的linux子系统-Ubuntu 22.04 一、安装linux子系统 1.1、 启动或关闭Windows功能-适用于Linux的Windows子系统 1.2 WSL 官方文档 使用 WSL 在 Windows 上安装 Linux //1-安装 WSL 命令 wsl --install//2-检查正在运行的 WSL 版本:…

关于在VS2017中编译Qt项目遇到的问题

关于在VS2017中编译Qt项目遇到的问题 【QT】VS打开QT项目运行不成功 error MSB6006 “cmd.exe”已退出,代码为 2。如何在VS2017里部署的Qt Designer上编辑槽函数 【QT】VS打开QT项目运行不成功 error MSB6006 “cmd.exe”已退出,代码为 2。 链接 如何在VS2017里部署的Qt Design…

10.python设计模式【代理模式】

内容:为其他对象提供一种代理一控制对这个对象的访问 应用场景: 远程代理: 为远程的对象提供代理虚代理:根据需要创建很大的对象保护代理:控制对原始对象的访问,用于对象有不同访问权限时 UML图 举个例…

WIZnet W6100-EVB-Pico DHCP 配置教程(三)

前言 在上一章节中我们讲了网络信息配置,那些网络信息的配置都是用户手动的去配置的,为了能跟电脑处于同一网段,且电脑能成功ping通板子,我们不仅要注意子网掩码,对于IP地址主机位和网络位的划分,而且还要注…

【unity】Pico VR 开发笔记(基础篇)

Pico VR 开发笔记(基础篇) XR Interaction Tooikit 版本 2.3.2 一、环境搭建 其实官方文档已经写的很详细了,这里只是不废话快速搭建,另外有一项官方说明有误的,补充说明一下,在开发工具部分说明 插件安装——安装pico的sdk和XR…

编程小白的自学笔记十二(python爬虫入门四Selenium的使用实例二)

系列文章目录 编程小白的自学笔记十一(python爬虫入门三Selenium的使用实例详解) 编程小白的自学笔记十(python爬虫入门二实例代码详解) 编程小白的自学笔记九(python爬虫入门代码详解) 目录 系列文章…

指针应用基础练习

(1)一级指针,二级指针 void getString(char **p) {*p "hello world"; }int main(void) {char *str NULL;getString(&str);printf("%s\n", str); } 代码分析: 定义了一个char型指针str,…

uni-app踩坑记

打包h5如何配置域名: 在manifest.json中配置域名 配置完成后无论是测试环境还是正式环境都带上/mobile/,否则会报错404 如何引入调试工具erada: 在默认的index.html中直接引入erada,页面样式会整个错乱,解决方案就是引入官方…

信号槽中的函数重载

信号槽中的函数重载 QT4的方式QT5的方式函数指针重载函数QT5信号函数重载解决方案 总结 QT4的方式 Qt4中声明槽函数必须要使用 slots 关键字, 不能省略。 信号函数: 槽函数: mainwondow: cpp文件: #include "mainwindow.h"…

WebSocket协议解析

文章目录 概要一、WS原理1.1、帧格式 二、WS实战2.1、客户端发起协议升级请求2.2、服务端响应协议升级2.3、核心事件2.4、心跳保活 三、总结 概要 项目中的IM系统是基于WebSocket做的,所以这里聊一下。 说到WS,不得不提HTTP,HTTP是基于TCP,面…

【每天40分钟,我们一起用50天刷完 (剑指Offer)】第四十二天 42/50【unordered_set】【双指针处理连续】【翻转字符串】

专注 效率 记忆 预习 笔记 复习 做题 欢迎观看我的博客,如有问题交流,欢迎评论区留言,一定尽快回复!(大家可以去看我的专栏,是所有文章的目录)   文章字体风格: 红色文字表示&#…

AD21原理图的高级应用(五)自定义原理图模板及调用

(五)自定义原理图模板及调用 1.创建原理图模板2.调用原理图模板 1.创建原理图模板 利用 Altium Designer 软件在原理图中创建自己的模板,可以在图纸的右下角绘制一个表格用于显示图纸的一些参数,例如文件名、作者、修改时间、审核者、公司信息、图纸总数…

shopee,lazada,etsy店群如何高效安全的管理

对于电商卖家来说,要经营多个店铺,管理多个账号是非常常见的操作。为了避免账号关联被平台识别出来,需要使用防关联的浏览器来进行操作 ​1、支持多平台 支持同时管理多个电商平台店铺,Shopee、Lazada、etsy、poshmark、vinted等&…

Vue.js 生命周期函数

系列文章目录 Vue.js基础简答题 文章目录 系列文章目录前言一、创建阶段1.beforeCreate2.created3.beforeMount4.mounted 二、运行阶段1.beforeUpdate2.updated 三、销毁阶段1.beforeDestroy2.destroyed 总结 前言 Vue.js 生命周期指的是Vue实例的生命周期; Vue实…

【RabbitMQ】Linux系统服务器安装RabbitMQ

一、下载 首先应该下载erlang,rabbitmq运行需要有erland环境。 官网地址:https://www.erlang.org/downloads 下载rabbitmq 官网环境:https://www.rabbitmq.com/download.html 注意:el7对应centos7,el8对应centos8…

在Word中快速输入方框对号

在Word中输入方框对号播报文章 先输入“2611”,然后同时按ALTX, 插入 符号 其他符号

主流开源监控系统一览

减少故障有两个层面的意思,一个是做好常态预防,不让故障发生;另一个是如果故障发生,要能尽快止损,减少故障时长。而监控的典型作用,就是帮助我们发现及定位故障,这两个环节对于减少故障时长至关…

STM32 串口学习(二)

要用跳线帽将PA9与RXD相连,PA10与TXD相连。 软件设计 void uart_init(u32 baud) {//UART 初始化设置UART1_Handler.InstanceUSART1; //USART1UART1_Handler.Init.BaudRatebound; //波特率UART1_Handler.Init.WordLengthUART_WORDLENGTH_8B; //字长为 8 位数据格式U…

CAN通信的位定时与同步

位定时与同步 1.位时间 1.1相关基本概念 1)系统时钟:记为 t c l k t_{clk} tclk​; 2)CAN时钟周期:CAN时钟是由系统时钟分频而来的一个时间长度值,表示CAN控制器的工作时钟,实际上就是一个时…