数据结构与算法之美学习笔记:22 | 哈希算法(下):哈希算法在分布式系统中有哪些应用?

目录

  • 前言
  • 应用五:负载均衡
  • 应用六:数据分片
  • 应用七:分布式存储
  • 解答开篇 & 内容小结

前言

在这里插入图片描述
本节课程思维导图
在这里插入图片描述
今天,我们再来看剩余三种应用:负载均衡、数据分片、分布式存储。你可能已经发现,这三个应用都跟分布式系统有关。没错,今天我就带你看下,哈希算法是如何解决这些分布式问题的。

应用五:负载均衡

我们知道,负载均衡算法有很多,比如轮询、随机、加权轮询等。那如何才能实现一个会话粘滞(session sticky)的负载均衡算法呢?也就是说,我们需要在同一个客户端上,在一次会话中的所有请求都路由到同一个服务器上。
我们可以通过哈希算法,对客户端 IP 地址或者会话 ID 计算哈希值,将取得的哈希值与服务器列表的大小进行取模运算,最终得到的值就是应该被路由到的服务器编号。 这样,我们就可以把同一个 IP 过来的所有请求,都路由到同一个后端服务器上。

应用六:数据分片

哈希算法还可以用于数据的分片。我这里有两个例子。

  1. 如何统计“搜索关键词”出现的次数?假如我们有 1T 的日志文件,这里面记录了用户的搜索关键词,我们想要快速统计出每个关键词被搜索的次数,该怎么做呢?我们来分析一下。这个问题有两个难点,第一个是搜索日志很大,没办法放到一台机器的内存中。第二个难点是,如果只用一台机器来处理这么巨大的数据,处理时间会很长。
    针对这两个难点,我们可以先对数据进行分片,然后采用多台机器处理的方法,来提高处理速度。具体的思路是这样的:为了提高处理的速度,我们用 n 台机器并行处理。我们从搜索记录的日志文件中,依次读出每个搜索关键词,并且通过哈希函数计算哈希值,然后再跟 n 取模,最终得到的值,就是应该被分配到的机器编号。这样,哈希值相同的搜索关键词就被分配到了同一个机器上。也就是说,同一个搜索关键词会被分配到同一个机器上。每个机器会分别计算关键词出现的次数,最后合并起来就是最终的结果。实际上,这里的处理过程也是 MapReduce 的基本设计思想。
  2. 如何快速判断图片是否在图库中?如何快速判断图片是否在图库中?
    当时我介绍了一种方法,即给每个图片取唯一标识(或者信息摘要),然后构建散列表。假设现在我们的图库中有 1 亿张图片,很显然,在单台机器上构建散列表是行不通的。因为单台机器的内存有限,而 1 亿张图片构建散列表显然远远超过了单台机器的内存上限。
    我们同样可以对数据进行分片,然后采用多机处理。我们准备 n 台机器,让每台机器只维护某一部分图片对应的散列表。我们每次从图库中读取一个图片,计算唯一标识,然后与机器个数 n 求余取模,得到的值就对应要分配的机器编号,然后将这个图片的唯一标识和图片路径发往对应的机器构建散列表。当我们要判断一个图片是否在图库中的时候,我们通过同样的哈希算法,计算这个图片的唯一标识,然后与机器个数 n 求余取模。假设得到的值是 k,那就去编号 k 的机器构建的散列表中查找。

现在,我们来估算一下,给这 1 亿张图片构建散列表大约需要多少台机器。散列表中每个数据单元包含两个信息,哈希值和图片文件的路径。假设我们通过 MD5 来计算哈希值,那长度就是 128 比特,也就是 16 字节。文件路径长度的上限是 256 字节,我们可以假设平均长度是 128 字节。如果我们用链表法来解决冲突,那还需要存储指针,指针只占用 8 字节。所以,散列表中每个数据单元就占用 152 字节。

假设一台机器的内存大小为 2GB,散列表的装载因子为 0.75,那一台机器可以给大约 1000 万(2GB*0.75/152)张图片构建散列表。所以,如果要对 1 亿张图片构建索引,需要大约十几台机器。在工程中,这种估算还是很重要的,能让我们事先对需要投入的资源、资金有个大概的了解,能更好地评估解决方案的可行性。实际上,针对这种海量数据的处理问题,我们都可以采用多机分布式处理。借助这种分片的思路,可以突破单机内存、CPU 等资源的限制。

应用七:分布式存储

现在互联网面对的都是海量的数据、海量的用户。我们为了提高数据的读取、写入能力,一般都采用分布式的方式来存储数据,比如分布式缓存。我们有海量的数据需要缓存,所以一个缓存机器肯定是不够的。于是,我们就需要将数据分布在多台机器上。
该如何决定将哪个数据放到哪个机器上呢?我们可以借用前面数据分片的思想,即通过哈希算法对数据取哈希值,然后对机器个数取模,这个最终值就是应该存储的缓存机器编号。但是,如果数据增多,原来的 10 个机器已经无法承受了,我们就需要扩容了,比如扩到 11 个机器,这时候麻烦就来了。因为,这里并不是简单地加个机器就可以了。原来的数据是通过与 10 来取模的。比如 13 这个数据,存储在编号为 3 这台机器上。但是新加了一台机器中,我们对数据按照 11 取模,原来 13 这个数据就被分配到 2 号这台机器上了。
在这里插入图片描述
因此,所有的数据都要重新计算哈希值,然后重新搬移到正确的机器上。这样就相当于,缓存中的数据一下子就都失效了。所有的数据请求都会穿透缓存,直接去请求数据库。这样就可能发生雪崩效应,压垮数据库。所以,我们需要一种方法,使得在新加入一个机器后,并不需要做大量的数据搬移。这时候,一致性哈希算法就要登场了。

假设我们有 k 个机器,数据的哈希值的范围是[0, MAX]。我们将整个范围划分成 m 个小区间(m 远大于 k),每个机器负责 m/k 个小区间。当有新机器加入的时候,我们就将某几个小区间的数据,从原来的机器中搬移到新的机器中。这样,既不用全部重新哈希、搬移数据,也保持了各个机器上数据数量的均衡。一致性哈希算法的基本思想就是这么简单。除了我们上面讲到的分布式缓存,实际上,一致性哈希算法的应用非常广泛,在很多分布式存储系统中,都可以见到一致性哈希算法的影子。

解答开篇 & 内容小结

这两节的内容理论不多,比较贴近具体的开发。今天我讲了三种哈希算法在分布式系统中的应用,它们分别是:负载均衡、数据分片、分布式存储。
在负载均衡应用中,利用哈希算法替代映射表,可以实现一个会话粘滞的负载均衡策略。
在数据分片应用中,通过哈希算法对处理的海量数据进行分片,多机分布式处理,可以突破单机资源的限制。
在分布式存储应用中,利用一致性哈希算法,可以解决缓存等分布式系统的扩容、缩容导致数据大量搬移的难题。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/152175.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

详解Java设计模式之职责链模式

原文:详解Java设计模式之职责链模式_java_脚本之家 责任链模式是一种行为设计模式,使多个对象都有机会处理请求,从而避免请求的发送者和接收者之间的耦合关系,文中通过代码示例给大家介绍的非常详细,需要的朋友可以参考下 − 目…

直播美颜SDK对比评测:技术原理与应用实践

直播行业蓬勃发展,其中,美颜滤镜技术在直播中扮演着至关重要的角色。本文将深入探讨不同直播美颜SDK的技术原理,并通过对比评测它们在实际应用中的表现,以揭示各SDK的优劣之处。 一、背景 随着直播技术的不断进步,直…

【前端知识】Node——events模块的相关方法

一、events模块的常用方法 // 事件总线 const EventsEmitter require(events);const emitter new EventsEmitter();function HLog(msg){console.log(msg); }// 监听 emitter.on(hlog, HLog);setTimeout(() > {// 触发,打印emitter.emit(hlog, hello emitter!)…

虚幻C++ day5

角色状态的常见机制 创建角色状态设置到UI上 在MainPlayer.h中新建血量,最大血量,耐力,最大耐力,金币变量,作为角色的状态 //主角状态UPROPERTY(EditDefaultsOnly, BlueprintReadOnly, Category "Playe Stats&…

配置Nginx服务器用于Web应用代理和SSL{仅配置文件}

在本篇博文中,我们将深入讨论如何配置Nginx服务器,使其成为一个强大的Web应用代理,并通过SSL协议加强通信的安全性。 1. 服务器监听与SSL设置 首先,我们要配置Nginx服务器以监听HTTPS流量并设置SSL证书,确保通信的安…

基于人工水母算法优化概率神经网络PNN的分类预测 - 附代码

基于人工水母算法优化概率神经网络PNN的分类预测 - 附代码 文章目录 基于人工水母算法优化概率神经网络PNN的分类预测 - 附代码1.PNN网络概述2.变压器故障诊街系统相关背景2.1 模型建立 3.基于人工水母优化的PNN网络5.测试结果6.参考文献7.Matlab代码 摘要:针对PNN神…

拆点____ 行车路线

3255. 行车路线 小明和小芳出去乡村玩,小明负责开车,小芳来导航。 小芳将可能的道路分为大道和小道。 大道比较好走,每走 1 公里小明会增加 1 的疲劳度。 小道不好走,如果连续走小道,小明的疲劳值会快速增加&#xff0…

Network(三)动态路由与ACL配置

一 三层交换机 1 三层交换机概述 三层交换二层交换三层转发 2 虚拟接口概述 在三层交换机上配置的VLAN接口为虚拟接口,使用Vlanif(VLAN虚拟接口)实现VLAN间路由,VLAN接口的引入使得应用更加灵活 三层交换机VLAN间通信的转发…

vue3+vite+SQL.js 读取db3文件数据

前言:好久没写博客了,最近一直在忙,没时间梳理。最近遇到一个需求是读取本地SQLite文件,还是花费了点时间才实现,没怎么看到vite方面写这个的文章,现在分享出来完整流程。 1.pnpm下载SQL.js(什么都可以下)…

力扣每日一题-数位和相等数对的最大和-2023.11.18

力扣每日一题:数位和相等数对的最大和 开篇 这道每日一题还是挺需要思考的,我绕晕了好久,根据题解的提示才写出来。 题目链接:2342.数位和相等数对的最大和 题目描述 代码思路 1.创建一个数组存储每个数位的数的最大值,创建一…

Ajax之引入

【一】Ajax简介 【1】精髓 精髓:异步提交/局部刷新 【2】发送请求的方式 向后端发送请求的方式 浏览器地址直接url回车 GET请求 a标签的 href 属性 GET请求form表单 GET请求/POST请求 Ajax GET请求/POST请求 【3】简介 Ajax不是新的编程语言,而是一…

软件项目测试指南

软件测试是保证软件产品质量的重要手段之一。它是测量、评估软件产品特点和能力的活动。现在,国内一些软件企业对于软件测试的重视程度还很不够,认为测试工作非常简单,只是简单地操作所测的软件产品而已。这种错误的思想严重影响了国内软件质…

Evil靶场

Evil 1.主机发现 使用命令探测存活主机,80.139是kali的地址,所以靶机地址就是80.134 fping -gaq 192.168.80.0/242.端口扫描 开放80,22端口 nmap -Pn -sV -p- -A 192.168.80.1343.信息收集 访问web界面 路径扫描 gobuster dir -u http…

【C++上层应用】2. 预处理器

文章目录 【 1. #define 预处理 】【 2. #ifdef、#if 条件编译 】2.1 #ifdef2.2 #if2.3 实例 【 3. # 和 ## 预处理 】3.1 # 替换预处理3.2 ## 连接预处理 【 4. 预定义宏 】 预处理器是一些指令,指示编译器在实际编译之前所需完成的预处理。 所有的预处理器指令都是…

SpringBoot2—运维实用篇

目录 打包与运行 • 程序打包与运行(Windows版) • 程序运行(Linux版) 配置高级 • 临时属性设置 • 配置文件分类 • 自定义配置文件 多环境开发 多环境开发(yaml单一文件版) 多环境开发&am…

碰到一个逆天表中表数据渲染

1. 逆天表中表数据问题 我有一个antd-table组件,他的编辑可以打开一个编辑弹窗打开弹窗里面还会有一个表格,如果这个表格的column是在外层js文件中保存的话,那么第一次打开会正常渲染数据,再次打开就不会渲染,即使是已…

JDK,JRE,JVM之间的区别和联系

JDK,JRE,JVM之间的区别和联系 JDK(Java SE Development Kit),Java标准开发包,它提供了编译、运行Java程序所需的各种工具和资源,包括Java编译器、Java运行时环境,以及常用的Java类库等。JRE( Java Runtime Enwironment…

从哪些方面分析Linux内核源码

从这些方面分析Linux内核源码,这里提供一个大致的大纲: 一、Linux内核源码概述 1. 什么是Linux内核? 2. Linux内核的主要功能 3. Linux内核的版本控制 4. Linux内核的组织结构 二、Linux内核编译与配置 1. 获取Linux内核源码 2. 安装…

Hive常见的面试题(十二道)

Hive 1. Hive SQL 的执行流程 ⾸先客户端通过shell或者Beeline等⽅式向Hive提交SQL语句,之后sql在driver中经过 解析器(SQL Parser):将 SQL 字符串转换成抽象语法树 AST,这一步一般都用第三方工具库完成,比如 ANTLR&…

SQL单表复杂查询where、group by、order by、limit

1.1SQL查询代码如下&#xff1a; select job as 工作类别,count(job) as 人数 from tb_emp where entrydate <2015-01-01 group by job having count(job) > 2 order by count(job) limit 1,1where entrydate <‘2015-01-01’ 表示查询日期小于2015-01-01的记录…