竞赛选题 行人重识别(person reid) - 机器视觉 深度学习 opencv python

文章目录

  • 0 前言
  • 1 技术背景
  • 2 技术介绍
  • 3 重识别技术实现
    • 3.1 数据集
    • 3.2 Person REID
      • 3.2.1 算法原理
      • 3.2.2 算法流程图
  • 4 实现效果
  • 5 部分代码
  • 6 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 深度学习行人重识别(person reid)系统

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:5分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 技术背景

行人重识别技术,是智能视频监控系统的关键技术之一,其研宄是针对特定目标行人的视频检索识别问题。行人再识别是一种自动的目标判定识别技术,它综合地运用了计算机视觉技术、机器学习、视频处理、图像分析、模式识别等多种相关技术于监控系统中,其主要描述的是在多个无重叠视域的摄像头监控环境之下,通过相关算法判断在某个镜头下出现过的感兴趣的目标人物是否在其他摄像头下再次出现。

2 技术介绍

在视频监控系统中,行人再识别任务的整体框架如下图所示:
—个监控系统由多个视域不相交的监控摄像头组成,摄像机的位置可以随时更改,同时也可以随时增加或减少摄像机。不两监控摄像头所摄取的画面、视角等各不相同。在这样的监控系统中,对行人的动向监测是,至关重要的。

对行人的监控主要基于以下三个基本的模块:

在这里插入图片描述

  • 行人检测:
    行人检测的目标是在图片中定位到行人的具体位置。这一步骤仅涉及到对于静止的单张图片的处理,而没有动态的处理,没有时间序列上的相关分析。

  • 行人轨迹跟踪:
    行人轨迹跟踪的主要任务是在一段时间内提供目标任务的位置移动信息。与行人检测不同,轨迹跟踪与时间序列紧密相关。行人轨迹跟踪是在行人检测的基础上进行的。

  • 行人再识别:
    行人再识别任务的目标是在没有相重合视域的摄像头或摄像机网络内的不同背景下的许多行人中中识别某个特定行人。行人再识别的


在此基础上,用训练出的模型进行学习从而判断得出某个摄像头下的行人与另一摄像头下的目标人物为同一个人。在智能视频监控系统中的行人再识别任务具有非常广阔的应用前景。行人再识别的应用与行人检测、目标跟踪、行人行为分析、敏感事件检测等等都有着紧密的联系,这些分析处理技术对于公安部门的刑侦工作和城市安防建设工作有着重要的意义。

3 重识别技术实现

3.1 数据集

目前行人再识别的研究需要大量的行人数据集。行人再识别的数据集主要是通过在不同区域假设无重叠视域的多个摄像头来采集拍摄有行人图像的视频,然后对视频提取帧,对于视频帧图像采用人工标注或算法识别的方式进行人体检测及标注来完成的。行人再识别数据集中包含了跨背景、跨时间、不同拍摄角度下、各种不同姿势的行人图片,如下图所示。

在这里插入图片描述

3.2 Person REID

3.2.1 算法原理

给定N个不同的行人从不同的拍摄视角的无重叠视域摄像机捕获的图像集合,行人再识别的任务是学习一个模型,该模型可以尽可能减小行人姿势和背景、光照等因素带来的影响,从而更好地对行人进行整体上的描述,更准确地对不同行人图像之间的相似度进行衡量。

我这里使用注意力相关的特征的卷积神经网络。该基础卷积神经网络架构可以由任何卷积神经网络模型代替,例如,VGG-19,ResNet-101。

该算法的核心模块在于注意力学习模型。

3.2.2 算法流程图

在这里插入图片描述

4 实现效果

在多行人场景下,对特定行人进行寻找
在这里插入图片描述

5 部分代码

import argparseimport timefrom sys import platformfrom models import *from utils.datasets import *from utils.utils import *from reid.data import make_data_loaderfrom reid.data.transforms import build_transformsfrom reid.modeling import build_modelfrom reid.config import cfg as reidCfgdef detect(cfg,data,weights,images='data/samples',  # input folderoutput='output',  # output folderfourcc='mp4v',  # video codecimg_size=416,conf_thres=0.5,nms_thres=0.5,dist_thres=1.0,save_txt=False,save_images=True):# Initializedevice = torch_utils.select_device(force_cpu=False)torch.backends.cudnn.benchmark = False  # set False for reproducible resultsif os.path.exists(output):shutil.rmtree(output)  # delete output folderos.makedirs(output)  # make new output folder############# 行人重识别模型初始化 #############query_loader, num_query = make_data_loader(reidCfg)reidModel = build_model(reidCfg, num_classes=10126)reidModel.load_param(reidCfg.TEST.WEIGHT)reidModel.to(device).eval()query_feats = []query_pids  = []for i, batch in enumerate(query_loader):with torch.no_grad():img, pid, camid = batchimg = img.to(device)feat = reidModel(img)         # 一共2张待查询图片,每张图片特征向量2048 torch.Size([2, 2048])query_feats.append(feat)query_pids.extend(np.asarray(pid))  # extend() 函数用于在列表末尾一次性追加另一个序列中的多个值(用新列表扩展原来的列表)。query_feats = torch.cat(query_feats, dim=0)  # torch.Size([2, 2048])print("The query feature is normalized")query_feats = torch.nn.functional.normalize(query_feats, dim=1, p=2) # 计算出查询图片的特征向量############# 行人检测模型初始化 #############model = Darknet(cfg, img_size)# Load weightsif weights.endswith('.pt'):  # pytorch formatmodel.load_state_dict(torch.load(weights, map_location=device)['model'])else:  # darknet format_ = load_darknet_weights(model, weights)# Eval modemodel.to(device).eval()# Half precisionopt.half = opt.half and device.type != 'cpu'  # half precision only supported on CUDAif opt.half:model.half()# Set Dataloadervid_path, vid_writer = None, Noneif opt.webcam:save_images = Falsedataloader = LoadWebcam(img_size=img_size, half=opt.half)else:dataloader = LoadImages(images, img_size=img_size, half=opt.half)# Get classes and colors# parse_data_cfg(data)['names']:得到类别名称文件路径 names=data/coco.namesclasses = load_classes(parse_data_cfg(data)['names']) # 得到类别名列表: ['person', 'bicycle'...]colors = [[random.randint(0, 255) for _ in range(3)] for _ in range(len(classes))] # 对于每种类别随机使用一种颜色画框# Run inferencet0 = time.time()for i, (path, img, im0, vid_cap) in enumerate(dataloader):t = time.time()# if i < 500 or i % 5 == 0:#     continuesave_path = str(Path(output) / Path(path).name) # 保存的路径# Get detections shape: (3, 416, 320)img = torch.from_numpy(img).unsqueeze(0).to(device) # torch.Size([1, 3, 416, 320])pred, _ = model(img) # 经过处理的网络预测,和原始的det = non_max_suppression(pred.float(), conf_thres, nms_thres)[0] # torch.Size([5, 7])if det is not None and len(det) > 0:# Rescale boxes from 416 to true image size 映射到原图det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()# Print results to screen image 1/3 data\samples\000493.jpg: 288x416 5 persons, Done. (0.869s)print('%gx%g ' % img.shape[2:], end='')  # print image size '288x416'for c in det[:, -1].unique():   # 对图片的所有类进行遍历循环n = (det[:, -1] == c).sum() # 得到了当前类别的个数,也可以用来统计数目if classes[int(c)] == 'person':print('%g %ss' % (n, classes[int(c)]), end=', ') # 打印个数和类别'5 persons'# Draw bounding boxes and labels of detections# (x1y1x2y2, obj_conf, class_conf, class_pred)count = 0gallery_img = []gallery_loc = []for *xyxy, conf, cls_conf, cls in det: # 对于最后的预测框进行遍历# *xyxy: 对于原图来说的左上角右下角坐标: [tensor(349.), tensor(26.), tensor(468.), tensor(341.)]if save_txt:  # Write to filewith open(save_path + '.txt', 'a') as file:file.write(('%g ' * 6 + '\n') % (*xyxy, cls, conf))# Add bbox to the imagelabel = '%s %.2f' % (classes[int(cls)], conf) # 'person 1.00'if classes[int(cls)] == 'person':#plot_one_bo x(xyxy, im0, label=label, color=colors[int(cls)])xmin = int(xyxy[0])ymin = int(xyxy[1])xmax = int(xyxy[2])ymax = int(xyxy[3])w = xmax - xmin # 233h = ymax - ymin # 602# 如果检测到的行人太小了,感觉意义也不大# 这里需要根据实际情况稍微设置下if w*h > 500:gallery_loc.append((xmin, ymin, xmax, ymax))crop_img = im0[ymin:ymax, xmin:xmax] # HWC (602, 233, 3)crop_img = Image.fromarray(cv2.cvtColor(crop_img, cv2.COLOR_BGR2RGB))  # PIL: (233, 602)crop_img = build_transforms(reidCfg)(crop_img).unsqueeze(0)  # torch.Size([1, 3, 256, 128])gallery_img.append(crop_img)if gallery_img:gallery_img = torch.cat(gallery_img, dim=0)  # torch.Size([7, 3, 256, 128])gallery_img = gallery_img.to(device)gallery_feats = reidModel(gallery_img) # torch.Size([7, 2048])print("The gallery feature is normalized")gallery_feats = torch.nn.functional.normalize(gallery_feats, dim=1, p=2)  # 计算出查询图片的特征向量# m: 2# n: 7m, n = query_feats.shape[0], gallery_feats.shape[0]distmat = torch.pow(query_feats, 2).sum(dim=1, keepdim=True).expand(m, n) + \torch.pow(gallery_feats, 2).sum(dim=1, keepdim=True).expand(n, m).t()# out=(beta∗M)+(alpha∗mat1@mat2)# qf^2 + gf^2 - 2 * qf@gf.t()# distmat - 2 * qf@gf.t()# distmat: qf^2 + gf^2# qf: torch.Size([2, 2048])# gf: torch.Size([7, 2048])distmat.addmm_(1, -2, query_feats, gallery_feats.t())# distmat = (qf - gf)^2# distmat = np.array([[1.79536, 2.00926, 0.52790, 1.98851, 2.15138, 1.75929, 1.99410],#                     [1.78843, 1.96036, 0.53674, 1.98929, 1.99490, 1.84878, 1.98575]])distmat = distmat.cpu().numpy()  # : (3, 12)distmat = distmat.sum(axis=0) / len(query_feats) # 平均一下query中同一行人的多个结果index = distmat.argmin()if distmat[index] < dist_thres:print('距离:%s'%distmat[index])plot_one_box(gallery_loc[index], im0, label='find!', color=colors[int(cls)])# cv2.imshow('person search', im0)# cv2.waitKey()print('Done. (%.3fs)' % (time.time() - t))if opt.webcam:  # Show live webcamcv2.imshow(weights, im0)if save_images:  # Save image with detectionsif dataloader.mode == 'images':cv2.imwrite(save_path, im0)else:if vid_path != save_path:  # new videovid_path = save_pathif isinstance(vid_writer, cv2.VideoWriter):vid_writer.release()  # release previous video writerfps = vid_cap.get(cv2.CAP_PROP_FPS)width = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))height = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*fourcc), fps, (width, height))vid_writer.write(im0)if save_images:print('Results saved to %s' % os.getcwd() + os.sep + output)if platform == 'darwin':  # macosos.system('open ' + output + ' ' + save_path)print('Done. (%.3fs)' % (time.time() - t0))if __name__ == '__main__':parser = argparse.ArgumentParser()parser.add_argument('--cfg', type=str, default='cfg/yolov3.cfg', help="模型配置文件路径")parser.add_argument('--data', type=str, default='data/coco.data', help="数据集配置文件所在路径")parser.add_argument('--weights', type=str, default='weights/yolov3.weights', help='模型权重文件路径')parser.add_argument('--images', type=str, default='data/samples', help='需要进行检测的图片文件夹')parser.add_argument('-q', '--query', default=r'query', help='查询图片的读取路径.')parser.add_argument('--img-size', type=int, default=416, help='输入分辨率大小')parser.add_argument('--conf-thres', type=float, default=0.1, help='物体置信度阈值')parser.add_argument('--nms-thres', type=float, default=0.4, help='NMS阈值')parser.add_argument('--dist_thres', type=float, default=1.0, help='行人图片距离阈值,小于这个距离,就认为是该行人')parser.add_argument('--fourcc', type=str, default='mp4v', help='fourcc output video codec (verify ffmpeg support)')parser.add_argument('--output', type=str, default='output', help='检测后的图片或视频保存的路径')parser.add_argument('--half', default=False, help='是否采用半精度FP16进行推理')parser.add_argument('--webcam', default=False, help='是否使用摄像头进行检测')opt = parser.parse_args()print(opt)with torch.no_grad():detect(opt.cfg,opt.data,opt.weights,images=opt.images,img_size=opt.img_size,conf_thres=opt.conf_thres,nms_thres=opt.nms_thres,dist_thres=opt.dist_thres,fourcc=opt.fourcc,output=opt.output)

6 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/150486.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

在vue-cli中快速使用webpack-bundle-analyzer

webpack-bundle-analyzer 是一个可视化资源分析工具&#xff0c;可以直观地分析打包出的文件有哪些&#xff0c;及它们的大小、占比情况、各文件 Gzip压缩后的大小、模块包含关系、依赖项等。 从vue-cli官方的更新记录可以看到&#xff0c;从vue-cli3开始集成report命令 当前环…

Python 基础之线程池入门

Python 基础之线程池入门 代码示例 import threading import time from concurrent.futures import ThreadPoolExecutor# 创建线程池 threadpool ThreadPoolExecutor(max_workers 20)# 具体执行任务的方法 def test(i):print(">>>>>>>>>>…

设计模式-组合模式-笔记

“数据结构”模式 常常有一些组件在内部具有特定的数据结构&#xff0c;如果让客户程序依赖这些特定数据结构&#xff0c;将极大地破坏组件的复用。这时候&#xff0c;将这些特定数据结构封装在内部&#xff0c;在外部提供统一的接口&#xff0c;来实现与特定数据结构无关的访…

什么是tomcat, tomcat该如何使用?(java)

目录 tomcat是什么? 下载安装 tomcat目录结构 启动服务器 部署静态页面 什么是"静态"? 部署单个HTML页面 部署带有CSS / JavaScript / 图片的HTML 部署html到单独的目录中 部署到云服务器 tomcat是什么? tomcat翻译过来为汤姆猫, 但是他可不是猫和老鼠中的…

餐饮品牌的市场不断下沉释放信号,乡镇外卖的发展机会来临

随着越来越多的人开始使用互联网&#xff0c;"小镇经济"迅速兴起&#xff0c;成为消费市场的热点&#xff0c;这是因为小镇人口庞大&#xff0c;消费需求快速增长。 数据表明&#xff0c;在中国消费市场中&#xff0c;下沉市场的消费规模占比高达17万亿元&#xff0…

消息消费过程

前言 本文介绍下Kafka消费过程, 内容涉及消费与消费组, 主题与分区, 位移提交&#xff0c;分区再平衡和消费者拦截器等内容。 消费者与消费组 Kafka将消费者组织为消费组, 消息只会被投递给消费组中的1个消费者。因此, 从不同消费组中的消费者来看, Kafka是多播(Pub/Sub)模式…

42、element表格内容溢出自动往上滚动,鼠标移入停止滚动,溢出继续滚动

vue模块&#xff0c;添加ref属性 <v-table ref"rollTable" style"margin: 0!important;" :loading"TBloading" :isIndex"true" :tableData"tableData":tableHead"tableHead":paginationShow"false"…

香港身份和内地身份可以共存吗?

香港身份和内地身份可以共存吗&#xff1f; 很多朋友在刚开始了解香港身份的时候&#xff0c;都会对香港永居身份、居民身份、内地户口等等名词产生疑惑&#xff0c;搞不清它们之间的区别。 还有一部分人误以为拿到香港身份就意味着要放弃内地户口。 今天银河君就来具体解释…

电影:从微缩模型到AI纹理

在线工具推荐&#xff1a; 三维数字孪生场景工具 - GLTF/GLB在线编辑器 - Three.js AI自动纹理化开发 - YOLO 虚幻合成数据生成器 - 3D模型在线转换 - 3D模型预览图生成服务 自胶片问世以来&#xff0c;电影制作人必须以模仿现实的方式使用纹理&#xff0c;让观众相信他…

【Linux】环境变量--PATH环境变量/环境变量的操作/命令行参数

文章目录 一、PATH环境变量1.什么是PATH环境变量2.如何添加PATH环境变量3.系统中的其他环境变量4.环境变量的来源 二、环境变量的操作1.设置环境变量2.通过getenv获取环境变量3.环境变量的意义 三、命令行参数 一、PATH环境变量 1.什么是PATH环境变量 这里我们先提出一个问题…

【阿里云】图像识别

一、阿里云官网资料及配置本地 二、配置环境变量 三、C语言调用阿里云Python接口 一、阿里云官网资料及配置本地 阿里云官网 垃圾识别分类 sudo apt install python3-pip pip3 install alibabacloud_imagerecog20190930可能出现的网络问题 二、配置环境变量 配置环境变量A…

Apache POI(Java)

一、Apache POI介绍 Apache POI是Apache组织提供的开源的工具包&#xff08;jar包&#xff09;。大多数中小规模的应用程序开发主要依赖于Apache POI&#xff08;HSSF XSSF&#xff09;。它支持Excel 库的所有基本功能; 文本的导入和导出是它的主要特点。 我们可以使用 POI 在…

mfc140.dll是什么文件?如何修复mfc140.dll丢失的方法分享

​mfc140.dll丢失的原因 未正确安装Microsoft Visual C Redistributable&#xff1a;mfc140.dll是Visual C库的一部分&#xff0c;如果没有正确安装Visual C Redistributable&#xff0c;可能导致mfc140.dll丢失。 系统文件损坏&#xff1a;由于病毒感染、系统错误或其他原因…

济南数字孪生赋能工业制造,加速推进制造业数字化转型

济南数字孪生赋能工业制造&#xff0c;加速推进制造业数字化转型。数字孪生是指通过数字模型对现实世界进行模拟和描述&#xff0c;从而实现数字化转型的技术。数字孪生技术通过利用先进传感与测量技术、实时数据融合及分析技术、虚拟现实技术和仿真技术&#xff0c;在数字空间…

Vite - 配置 - 自动修改 index.html 中的title

需求描述 在Vue3项目的开发过程中&#xff0c;我们为了能区分正式环境和测试环境&#xff0c; 通常会进行环境配置文件的区分&#xff0c; 例如&#xff0c;开发环境一个配置文件、生产环境一个配置文件。因此&#xff0c;我们就希望 在项目的index.html 的 title 标签中&…

element el-date-picker报错Prop being mutated:“placement“快速解决方式

报错信息 Avoid mutating a prop directly since the value will be overwritten whenever the parent component re-renders. Instead, use a data or computed property based on the prop’s value. Prop being mutated: “placement” 报错版本 element-ui 2.15.6 和 2.15…

单链表相关面试题--4.输入一个链表,输出该链表中倒数第k个结点

/* 解题思路&#xff1a; 快慢指针法 fast, slow, 首先让fast先走k步&#xff0c;然后fast,slow同时走&#xff0c;fast走到末尾时&#xff0c;slow走到倒数第k个节点。 */ class Solution { public:ListNode* FindKthToTail(ListNode* pListHead, unsigned int k) {struct Lis…

【windows 清理redis 缓存】

redis-cli.exe flushall flushdb

深度学习领域中的耦合与解耦

在阅读论文的时候应该会看到两个操作&#xff0c;一个是耦合&#xff0c;一个是解耦&#xff0c;经常搭配着出现的就是两个词语&#xff0c;耦合头&#xff08;Coupled head&#xff09;以及Decoupled head&#xff08;解耦合头&#xff09;&#xff0c;那为什么要耦合&#xf…

【docker】iptables实现NAT

iptables是一个Linux内核中的防火墙工具&#xff0c;可以被用来执行各种网络相关的任务&#xff0c;如过滤、NAT和端口转发等&#xff0c;可以监控、过滤和重定向网络流量。 iptables可以用于以下应用场景&#xff1a; 网络安全&#xff1a;iptables可以过滤网络流量&#xf…