爱上C语言:操作符详解(下)

🚀 作者:阿辉不一般
🚀 你说呢:生活本来沉闷,但跑起来就有风
🚀 专栏:爱上C语言
🚀作图工具:draw.io(免费开源的作图网站)
请添加图片描述

如果觉得文章对你有帮助的话,还请点赞,关注,收藏支持博主,如有不足还请指点,博主及时改正,感谢大家支持!!!

文章目录

  • 🚀前言
  • 🚀整型的存储以及原、反、补码
  • 🚀移位操作符
    • ✈️左移操作符(<<)
    • ✈️右移操作符(>>)
  • 🚀位操作符
    • ✈️一道变态面试题
  • 🚀单目操作符
    • ✈️ 逻辑反操作(!)
    • ✈️sizeof
  • 🚀剩下的操作符
  • 🚀复杂的表达式如何计算
    • ✈️优先级
    • ✈️结合性

🚀前言

大家好啊😉!承接之前的操作符上篇,今天阿辉将介绍剩下的操作符,包括移位操作符,位操作符以及单目操作符,持续输出干货中,关注阿辉不迷路哦 😘 ,内容干货满满😋,接下来就跟着阿辉一起学习吧👊

🚀整型的存储以及原、反、补码

介绍移位操作符和位操作符前得先了解整型在内存中的存储以及原反补码,阿辉上篇文章上篇文章整型的存储里面有详细的讲解(点击直接跳转哦 😘)

🚀移位操作符

移位操作符有何作用?
移位操作符移动的是数据在内存中存储的补码的二进制位,其中移位操作符的“位”字就是指二进制位

移位操作符有左移操作符右移操作符两种

✈️左移操作符(<<)

左移操作符怎么使用呢?

左操作数 << 右操作数
左操作数是要被左移位的数
右操作数是要左移移动的位数

左移操作符的规则就是左边丢弃,右边补0
我们来看一个🌰栗子

int main()
{int a = 10;0000 0000 0000 0000 0000 0000 0000 1010 ->a原码0000 0000 0000 0000 0000 0000 0000 1010 ->a反码 0000 0000 0000 0000 0000 0000 0000 1010 ->a补码 int b = a << 2;0000 0000 0000 0000 0000 0000 0010 1000 ->b补码 b也就是40return 0;
}

在这里插入图片描述
是不是有点懵😏,别急阿辉用图演示👇
请添加图片描述
现在是不是对左移操作符用法清晰多了😁 ,上述演示仅仅使用了正数,不过负数同样可以,负数仅仅是多了原反补码之间的转换

✈️右移操作符(>>)

右移操作符的使用

左操作数 >> 右操作数
左操作数是要被右移位的数
右操作数是要右移移动的位数

右移操作符的规则

  • 算术右移:左边补符号位,右边丢弃
  • 逻辑右移:左边补0,右边丢弃

对于使用逻辑右移还是算术右移从语言并未明确规定,但大部分编译器都使用算术右移,对于无符号数使用逻辑右移

算术右移:左移用正数,咱们这次用负数演示👊

int main()
{int a = -10;1000 0000 0000 0000 0000 0000 0000 1010->a原码1111 1111 1111 1111 1111 1111 1111 0101->a反码1111 1111 1111 1111 1111 1111 1111 0110->a补码int b = a >> 2;1111 1111 1111 1111 1111 1111 1111 1101->b补码1000 0000 0000 0000 0000 0000 0000 00101000 0000 0000 0000 0000 0000 0000 0011->b原码 也就是-3return 0;
}

请添加图片描述

逻辑右移:逻辑右移也与上述算数右移的运算是类似的,不过逻辑右移不管你是正数还是负数,左边通通补0

注意

  • 移位操作符的操作数只能为整型
  • 对于移位运算符,不要移动负数位,这个是标准未定义的
  • a>>1a<<1这两个都不会改变a的值,就像a+1这样并不会改变a的值

🚀位操作符

位操作符分类

& 按位与
| 按位或
^ 按位异或
~ 按位取反
& | ^ 这三个有两个操作数
~ 只有一个操作数

这里的位同样指的是二进制位,它们操作的依然是内存中的补码
&按位与: 两操作数内存中的补码两相同二进制位均为1就为1,其中一个0就为0
🌰栗子

int main()
{int a = 3;0000 0000 0000 0000 0000 0000 0000 0011 -> 3的原反补码int b = -5;1000 0000 0000 0000 0000 0000 0000 0101 -> -5的原码1111 1111 1111 1111 1111 1111 1111 1010 -> -5的反码1111 1111 1111 1111 1111 1111 1111 1011 -> -5的补码int c = a & b;1111 1111 1111 1111 1111 1111 1111 1011 -> -5的补码0000 0000 0000 0000 0000 0000 0000 0011 -> 3的补码0000 0000 0000 0000 0000 0000 0000 0011 -> 按位与结果符号位为0,原反补码相同,值为3return 0;
}

在这里插入图片描述
| 按位或: 两操作数内存中的补码两相同二进制位均为0就为0,其中一个1就为1

|&的用法类似这里就不举例子了

^按位异或: 两操作数内存中的补码两相同二进制位相同为0,相异为1
🌰栗子

int main()
{int a = 3;0000 0000 0000 0000 0000 0000 0000 0011 ->3原反补码int b = 3;int c = a ^ b;0000 0000 0000 0000 0000 0000 0000 0011 ->3原反补码0000 0000 0000 0000 0000 0000 0000 0011 ->3原反补码0000 0000 0000 0000 0000 0000 0000 0000 异或结果int d = c ^ a;0000 0000 0000 0000 0000 0000 0000 0000 ->c0000 0000 0000 0000 0000 0000 0000 0011 ->a0000 0000 0000 0000 0000 0000 0000 0011 异或结果int e = a ^ a ^ b;int f = a ^ b ^ a;return 0;
}

在这里插入图片描述
由上面的例子,我们可以得到以下结论👇

相同数字异或结果为0即a ^ a = 0,0与任何数字异或仍为该数字即0 ^ a = a
并且^支持交换律与结合律即a ^ b ^ c = a ^ c ^ b

~按位取反: 操作数在内存中的补码按二进制位0改为11改为0
🌰栗子

int main()
{int a = 0;0000 0000 0000 0000 0000 0000 0000 0000 ->0的原反补码1111 1111 1111 1111 1111 1111 1111 1111 ->按位取反结果1000 0000 0000 0000 0000 0000 0000 0001 ->原码值为-1int c = ~a;return 0;
}

在这里插入图片描述
注意:他们的操作数必须为整数

✈️一道变态面试题

不创建新变量交换两个整数

int main()
{int a = 10;int b = 12;a = a ^ b;b = a ^ b;a = b ^ a;return 0;
}

上面代码是不是很懵 😆,第一次我也很懵逼,我们接着看👇

a = a ^ b这时a的值不在是10而是10 ^ 12,然后b = a ^ b实际上是b = 10 ^ 12 ^12,由上面我们知道的^的特点可知10 ^ 12 ^ 12 = 10,这时b = 10,在看这句a = a ^ b实际上是a = 10 ^ 12 ^ 10,而10 ^ 12 ^ 10 = 12这时a = 12所以ab的值完成了交换

🚀单目操作符

单目操作符的分类:

!           逻辑反操作
-           负值
+           正值
&           取地址
sizeof      操作数的类型长度(以字节为单位)
~           对一个数的二进制按位取反
--          前置、后置--
++          前置、后置++
*           间接访问操作符(解引用操作符)
(类型)       强制类型转换

✈️ 逻辑反操作(!)

🌰栗子

int main()
{int a = 0;int b = 4;if (!(b == 4))printf("真");printf("%d ", !a);printf("%d\n", !b);return 0;
}

在这里插入图片描述
逻辑反操作即把0 (假) 改为1 (真) ,非0 (真) 改为0 (假)

✈️sizeof

sizeof这个操作符,sizeof是由来计算变量(类型)所占空间的大小,不关注存储的内容,单位是字节

int main()
{int a = 2;int b[4] = { 0 };char c = '1';printf("%u\n", sizeof(b));printf("%u\n", sizeof(b[0]));printf("%u\n", sizeof(a));printf("%u\n", sizeof(c));printf("%u\n", sizeof(int));return 0;
}

在这里插入图片描述
sizeof的操作数为数组名时计算的整个数组的大小

🚀剩下的操作符

其中有一些过于简单相信大家都掌握了,至于**结构体成员访问操作符(.)和(->)**会在后续结构体章节详细讲到, **解引用操作符(*)和取地址操作符(&)**会在后续数组篇中讲解

🚀复杂的表达式如何计算

C语言的操作符有2个重要的属性:优先级、结合性,这两个属性决定了表达式求值的计算顺序

✈️优先级

相邻操作符的优先级高的先算

int main()
{int a = 3;int b = 4;a - b * a;
}

上述代码*乘的优先级更高先算b * a而不是先算a - b

✈️结合性

当相邻两操作符优先级相同就要看结合性了,左结合从左向右计算,右结合从右向左计算

int main()
{int a = 3;int b = 4;a / b * a;
}

上述代码中/*的优先级相同都是左结合,因此先算a / b
下面是一张操作符优先级与结核性的表
在这里插入图片描述
虽然我们知道了操作符的结合性与优先级,但这并不能保证表达式具有唯一计算路径,因此尽量不要写过于复杂的表达式很容易出bug


到这里,阿辉今天对于C语言中操作符的分享就结束了,希望这篇博客能让大家有所收获, 如果觉得阿辉写得不错的话,记得给个赞呗,你们的支持是我创作的最大动力🌹
请添加图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/150447.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

STM32/N32G455国民科技芯片驱动DS1302时钟---笔记

这次来分享一下DS1302时钟IC&#xff0c;之前听说过这个IC&#xff0c;但是一直没搞过&#xff0c;用了半天时间就明白了原理和驱动&#xff0c;说明还是很简单的。 注&#xff1a;首先来区分一下DS1302和RTC时钟有什么不同&#xff0c;为什么不直接用RTC呢&#xff1f; RTC不…

[Vue 代码模板] Vue3 中使用 Tailwind CSS + NutUI 实现侧边工具栏切换主题

文章归档&#xff1a;https://www.yuque.com/u27599042/coding_star/vzkgy6gvcnpl3u2y 效果示例 配置 src 目录别名 https://www.yuque.com/u27599042/coding_star/ogu2bhefy1fvahfv 配置 Tailwind CSS https://www.yuque.com/u27599042/coding_star/yqzi9olphko9ity1 配置…

CAPL编程 - 事件驱动

1 事件概述 CAPL是一种面向过程、由事件驱动的类C语言。 事件驱动针对于顺序执行&#xff0c;其区别如下&#xff1a; 顺序执行&#xff1a;顺序执行流程中&#xff0c;子例程或过程函数按照代码编写顺序逐句执行。 事件驱动&#xff1a;CAPL程序由事件驱动&#xff0c;工程…

11.15 监控目录文件变化

监视对指定目录的更改&#xff0c;并将有关更改的信息打印到控制台&#xff0c;该功能的实现不仅可以在内核层&#xff0c;在应用层同样可以。程序中使用ReadDirectoryChangesW函数来监视目录中的更改&#xff0c;并使用FILE_NOTIFY_INFORMATION结构来获取有关更改的信息。 Re…

Selenium中元素定位方法详细介绍

&#x1f4e2;专注于分享软件测试干货内容&#xff0c;欢迎点赞 &#x1f44d; 收藏 ⭐留言 &#x1f4dd; 如有错误敬请指正&#xff01;&#x1f4e2;交流讨论&#xff1a;欢迎加入我们一起学习&#xff01;&#x1f4e2;资源分享&#xff1a;耗时200小时精选的「软件测试」资…

JavaScript实现飞机发射子弹详解(内含源码)

JavaScript实现飞机发射子弹 前言实现过程源码展示源码讲解HTML结构CSS结构js结构 前言 文本主要讲解如何利用JavaScript实现飞机发射子弹&#xff0c;实现过程以及源码讲解。实现效果图如下&#xff1a; 实现过程 首先&#xff0c;找到飞机和子弹的UI图&#xff0c;gif图最…

【Android】使用Retrofit2发送异步网络请求的简单案例

添加网络权限到AndroidManifest.xml清单文件 为了让你的Android应用程序能够使用互联网进行通信&#xff0c;你需要在AndroidManifest.xml文件中添加网络权限声明。<uses-permission android:name"android.permission.INTERNET"/> 这个权限应该添加到 Android…

python爬虫概述及简单实践:获取豆瓣电影排行榜

目录 前言 Python爬虫概述 简单实践 - 获取豆瓣电影排行榜 1. 分析目标网页 2. 获取页面内容 3. 解析页面 4. 数据存储 5. 使用代理IP 总结 前言 Python爬虫是指通过程序自动化地对互联网上的信息进行抓取和分析的一种技术。Python作为一门易于学习且强大的编程语言&…

LabVIEW关于USRPRIO的示例代码

LabVIEW关于USRPRIO的示例代码 USRPRIO 通常以两种方式使用&#xff1a; 1 基于 FPGA 的编程 对于希望修改USRP上的底层FPGA代码以添加自定义DSP模块的应用&#xff0c;请使用USRP示例项目。它可作为构建 USRP RIO 流式处理应用程序的起点&#xff0c;可从“创建项目”对话框…

项目资讯丨轻空间中标连云港市首座“多功能声学综合馆”(EPC)

近日&#xff0c;轻空间&#xff08;江苏&#xff09;膜科技有限公司&#xff08;以下简称“轻空间”&#xff09;成功中标连云港市首座“多功能声学综合馆”项目&#xff0c;这标志着轻空间在新型气膜领域的创新突破技术&#xff0c;再次获得政府机构的高度认可&#xff0c;为…

水声功率放大器在声呐系统中的应用有哪些

水声功率放大器在声呐系统中扮演着重要的角色&#xff0c;其应用涵盖了声呐系统的多个方面。下面就让安泰电子来介绍水声功率放大器在声呐系统中的应用。 发射声波信号&#xff1a;声呐系统通过发射声波信号并接收其回波来探测和测量海洋中的目标物体。水声功率放大器用于放大发…

划片机新手教程:从准备工作到注意事项全解析!

随着科技的飞速发展&#xff0c;划片机已成为半导体行业不可或缺的一部分。对于新手来说&#xff0c;如何正确操作划片机显得尤为重要。以下是新手操作划片机的步骤和建议。 一、准备工作 在开始操作划片机之前&#xff0c;首先需要准备好以下工具和材料&#xff1a; 1. 划片机…

CICD 持续集成与持续交付——gitlab

部署 虚拟机最小需求&#xff1a;4G内存 4核cpu 下载&#xff1a;https://mirrors.tuna.tsinghua.edu.cn/gitlab-ce/yum/el7/ 安装依赖性 [rootcicd1 ~]# yum install -y curl policycoreutils-python openssh-server perl[rootcicd1 ~]# yum install -y gitlab-ce-15.9.3-ce.0…

SQL常见函数整理 —— lead()向下偏移

1. 用法 是在窗口函数中使用的函数&#xff0c;它用于获取当前行的下一行&#xff08;后一行&#xff09;的某个列的值。具体来说&#xff0c;LEAD() 函数可用于查找任何给定行的下一行&#xff08;后一行&#xff09;的值&#xff0c;同时也可控制行数偏移量&#xff08;offse…

创建自定义日志筛选器

Windows的事件查看器中的日志包含了很多信息&#xff0c;但是系统自带的筛选器只能筛选固定的字段和内容。有时候想根据某个事件中的用户名或者IP筛选的时候就没办法了。此时需要创建自定义筛选器来实现。 首先找到希望筛选的日志&#xff0c;调整成详细的XML视图。 这里面就有…

WhatsApp新营销全解:出海新个体,能不能做好WhatsApp营销

对于很多外贸跨境群体来说&#xff0c;很多时候是单打独斗的新个体运营模式&#xff0c;团队成员数量一两个人。然而&#xff0c;正是这一两个人的运营团队&#xff0c;在运营的时候不仅有四两拨千斤的能力&#xff0c;还能做到十八般武艺全能。 他们在运营设计和实操环节&…

手写promis(1)

目录 前言 核心功能--构造函数 核心功能--状态及原因 then方法 成功和失败回调 异步及多次调用 异步任务--核心api Promise.then: queueMicrotask: MutationObserver: setImmediate: setTimeout: 异步任务---函数封装 前言 Promise&#xff08;承诺&#xff09;…

GEM5 Garnet DVFS / NoC DVFS教程:ruby.clk_domain ruby.voltage_domain

简介 gem5中的 NoC部分是Garnet实现的&#xff0c;但是Garnet并没有单独的时钟域&#xff0c;而是保持ruby一致&#xff0c;要做noc的DVFS&#xff0c;便是要改ruby的 改电压 #这里只是生成一个随便变量名&#xff0c;存一下值。改是和频率一起的 userssaved_voltage_domain…

⑩⑥ 【MySQL】详解 触发器TRIGGER,协助 确保数据的完整性,日志记录,数据校验等操作。

个人简介&#xff1a;Java领域新星创作者&#xff1b;阿里云技术博主、星级博主、专家博主&#xff1b;正在Java学习的路上摸爬滚打&#xff0c;记录学习的过程~ 个人主页&#xff1a;.29.的博客 学习社区&#xff1a;进去逛一逛~ 触发器 ⑩⑥ 【MySQL】触发器详解1. 什么是触发…

java:IDEA中的Scratches and Consoles

背景 IntelliJ IDEA中的Scratches and Consoles是一种临时的文件编辑环境&#xff0c;用于写一些文本内容或者代码片段。 其中&#xff0c;Scratch files拥有完整的运行和debug功能&#xff0c;这些文件需要指定编程语言类型并且指定后缀。 举例&#xff1a;调接口 可以看到…