【docker】Docker网络与iptables

Docker能为我们提供很强大和灵活的网络能力,很大程度上要归功于与iptables的结合。在使用时,你可能没有太关注到 iptables在其中产生的作用,这是因为Docker已经帮我们自动的完成了相关的配置。

iptables在Docker中的应用主要是用于网络流量控制和安全控制。可以使用iptables规则来限制Docker容器的网络访问,以及将外部流量重定向到Docker容器。

docker的daemon进程有个--iptables的参数,可以使用它来控制是否要自动启用iptables规则的,默认已经设置成了开启(true)。所以通常我们不会过于关注到它的工作。

$ dockerd --help |grep iptables--iptables                                Enable addition of iptables rules (default true)

本文中,为了避免环境的干扰,我将使用DinD(docker in docker)的环境来进行介绍,可通过如下方式启动该环境:

$ sudo docker run --rm -d --privileged docker:dind

关闭Docker的iptables支持

在启动一个Docker daemon时关闭iptables支持,将--iptables参数设置为false。

$ sudo docker run --rm -d --privileged docker:dind  dockerd --iptables=false
f43d990164ef66401f7424364bcf85e6506e2f1419f146b940c2cd01a6463485$ sudo docker container exec -it f4 iptables -t filter -nvL --line-numbers
Chain INPUT (policy ACCEPT 0 packets, 0 bytes)
num   pkts bytes target     prot opt in     out     source               destinationChain FORWARD (policy ACCEPT 0 packets, 0 bytes)
num   pkts bytes target     prot opt in     out     source               destinationChain OUTPUT (policy ACCEPT 0 packets, 0 bytes)
num   pkts bytes target     prot opt in     out     source               destination$ sudo docker container exec -it f4 iptables -t nat -nvL --line-numbers
Chain PREROUTING (policy ACCEPT 0 packets, 0 bytes)
num   pkts bytes target     prot opt in     out     source               destinationChain INPUT (policy ACCEPT 0 packets, 0 bytes)
num   pkts bytes target     prot opt in     out     source               destinationChain OUTPUT (policy ACCEPT 0 packets, 0 bytes)
num   pkts bytes target     prot opt in     out     source               destinationChain POSTROUTING (policy ACCEPT 0 packets, 0 bytes)
num   pkts bytes target     prot opt in     out     source               destination

可以看到,当docker的daemon加了--iptables=false的参数时,默认没有任何规则的输出。

可以使用iptables-save命令将iptables的规则转储到stdout中,更方便查看:

$ iptables-save
*mangle
:PREROUTING ACCEPT [15992:2680378]
:INPUT ACCEPT [3831:436980]
:FORWARD ACCEPT [576:134155]
:OUTPUT ACCEPT [2486:235970]
:POSTROUTING ACCEPT [2931:348259]
COMMIT*raw
:PREROUTING ACCEPT [6:348]
:OUTPUT ACCEPT [4:312]
COMMIT*filter
:INPUT ACCEPT [82:4720]
:FORWARD ACCEPT [0:0]
:OUTPUT ACCEPT [49:4028]
COMMIT*nat
:PREROUTING ACCEPT [0:0]
:INPUT ACCEPT [0:0]
:OUTPUT ACCEPT [0:0]
:POSTROUTING ACCEPT [0:0]
COMMIT

开启Docker的iptables支持

在启动一个Docker的daemon时不指定--iptables选项,因为默认就是true。

$ sudo docker run --rm -d --privileged docker:dind  dockerd
5a236c0f17f58e71a4ac7a073b224b1d26f29daea07508a383f0dc561cf0644f$ sudo docker container exec -it 5a iptables -t nat -nvL --line-numbers
Chain PREROUTING (policy ACCEPT 0 packets, 0 bytes)
num   pkts bytes target     prot opt in     out     source               destination
1        0     0 DOCKER     0    --  *      *       0.0.0.0/0            0.0.0.0/0            ADDRTYPE match dst-type LOCALChain INPUT (policy ACCEPT 0 packets, 0 bytes)
num   pkts bytes target     prot opt in     out     source               destinationChain OUTPUT (policy ACCEPT 0 packets, 0 bytes)
num   pkts bytes target     prot opt in     out     source               destination
1        0     0 DOCKER     0    --  *      *       0.0.0.0/0           !127.0.0.0/8          ADDRTYPE match dst-type LOCALChain POSTROUTING (policy ACCEPT 0 packets, 0 bytes)
num   pkts bytes target     prot opt in     out     source               destination
1        0     0 MASQUERADE  0    --  *      !docker0  172.18.0.0/16        0.0.0.0/0Chain DOCKER (2 references)
num   pkts bytes target     prot opt in     out     source               destination
1        0     0 RETURN     0    --  docker0 *       0.0.0.0/0            0.0.0.0/0$ sudo docker container exec -it 5a iptables -t filter -nvL --line-numbers
Chain INPUT (policy ACCEPT 0 packets, 0 bytes)
num   pkts bytes target     prot opt in     out     source               destinationChain FORWARD (policy ACCEPT 0 packets, 0 bytes)
num   pkts bytes target     prot opt in     out     source               destination
1        0     0 DOCKER-USER  0    --  *      *       0.0.0.0/0            0.0.0.0/0
2        0     0 DOCKER-ISOLATION-STAGE-1  0    --  *      *       0.0.0.0/0            0.0.0.0/0
3        0     0 ACCEPT     0    --  *      docker0  0.0.0.0/0            0.0.0.0/0            ctstate RELATED,ESTABLISHED
4        0     0 DOCKER     0    --  *      docker0  0.0.0.0/0            0.0.0.0/0
5        0     0 ACCEPT     0    --  docker0 !docker0  0.0.0.0/0            0.0.0.0/0
6        0     0 ACCEPT     0    --  docker0 docker0  0.0.0.0/0            0.0.0.0/0Chain OUTPUT (policy ACCEPT 0 packets, 0 bytes)
num   pkts bytes target     prot opt in     out     source               destinationChain DOCKER (1 references)
num   pkts bytes target     prot opt in     out     source               destinationChain DOCKER-ISOLATION-STAGE-1 (1 references)
num   pkts bytes target     prot opt in     out     source               destination
1        0     0 DOCKER-ISOLATION-STAGE-2  0    --  docker0 !docker0  0.0.0.0/0            0.0.0.0/0
2        0     0 RETURN     0    --  *      *       0.0.0.0/0            0.0.0.0/0Chain DOCKER-ISOLATION-STAGE-2 (1 references)
num   pkts bytes target     prot opt in     out     source               destination
1        0     0 DROP       0    --  *      docker0  0.0.0.0/0            0.0.0.0/0
2        0     0 RETURN     0    --  *      *       0.0.0.0/0            0.0.0.0/0Chain DOCKER-USER (1 references)
num   pkts bytes target     prot opt in     out     source               destination
1        0     0 RETURN     0    --  *      *       0.0.0.0/0            0.0.0.0/0

可以看到,它比刚才关闭iptables支持时多了几条链:

  • DOCKER
  • DOCKER-ISOLATION-STAGE-1
  • DOCKER-ISOLATION-STAGE-2
  • DOCKER-USER

以及增加了一些转发规则,以下将具体介绍。

DOCKER-USER链

在上述新增的几条链中,我们先来看最先生效的DOCKER-USER 。

filter表中FORWARD链的第一条规则是:

-A FORWARD -j DOCKER-USER

这表示流量进入FORWARD链后,所有的流量直接进入到DOCKER-USER链。

而filter表中DOCKER-USER链中的规则是:

-A DOCKER-USER -j RETURN

这表示流量进入DOCKER-USER链处理后,(如果无其他处理)可以再RETURN回原先的链,进行后续规则的匹配。

这其实是Docker预留的一个链,供用户来自行配置的一些额外的规则的。

Docker默认的路由规则是允许所有客户端访问的,如果你的Docker服务运行在公网,或者你希望避免Docker中容器被局域网内的其他客户端访问,那么你需要在这里添加一条规则。

比如, 你仅仅允许192.168.1.100访问,但是要拒绝其他客户端访问:

$ sudo iptables -A DOCKER-USER -i eth0 ! -s 192.168.1.100 -j DROP

这个规则表示将源IP不是192.168.1.100的流量全部丢失。

此外,Docker在重启之类的操作时候,会进行iptables相关规则的清理和重建,但是DOCKER-USER链中的规则可以持久化,不受影响。

DOCKER-ISOLATION-STAGE-1/2链

filter表中的DOCKER-ISOLATION-STAGE-1DOCKER-ISOLATION-STAGE-2这两条链作用类似,这里一起进行介绍。

先来看一个例子:

// 创建一个自定义网络mynetwork
$ sudo docker network create mynetwork// box1容器运行在默认的网络下
$ sudo docker container run --rm -d --name box1 busybox /bin/sh -c "while true; do sleep 3600; done"
// box2和box3运行在自定义的网络mynetwork下
$ sudo docker container run --rm -d --name box2 --network mynetwork busybox /bin/sh -c "while true; do sleep 3600; done"
$ sudo docker container run --rm -d --name box3 --network mynetwork busybox /bin/sh -c "while true; do sleep 3600; done"

部署示意图如下:

在box2中访问box3,可以访问:

$ sudo docker container exec -it box2 ping 172.19.0.3 -c 3
PING 172.19.0.3 (172.19.0.3): 56 data bytes
64 bytes from 172.19.0.3: seq=0 ttl=64 time=0.077 ms
64 bytes from 172.19.0.3: seq=1 ttl=64 time=0.301 ms
64 bytes from 172.19.0.3: seq=2 ttl=64 time=0.196 ms--- 172.19.0.3 ping statistics ---
3 packets transmitted, 3 packets received, 0% packet loss
round-trip min/avg/max = 0.077/0.191/0.301 ms

在box2中访问box1,不可以访问:

$ sudo docker container exec -it box2 ping 172.17.0.2 -c 3
PING 172.17.0.2 (172.17.0.2): 56 data bytes--- 172.17.0.2 ping statistics ---
3 packets transmitted, 0 packets received, 100% packet loss

可以看到,如果是相同network的容器是可以ping成功的,但如果是不同network的容器则不能ping通。

那么两个network之间不能通信是怎么进行隔离的呢?这就是filter表中的DOCKER-ISOLATION-STAGE-1DOCKER-ISOLATION-STAGE-2这两条链的功劳。

当我们创建一个新的network时,系统层面会创建一个新的bridge端口br-d4bf6d77f3cf,再加上默认创建的bridge端口docker0,系统的bridge接口列表如下:

$ ip addr show type bridge
3: docker0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP group defaultlink/ether 02:42:15:94:c0:42 brd ff:ff:ff:ff:ff:ffinet 172.17.0.1/16 brd 172.17.255.255 scope global docker0valid_lft forever preferred_lft forever
13: br-d4bf6d77f3cf: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP group defaultlink/ether 02:42:d0:f6:09:f1 brd ff:ff:ff:ff:ff:ffinet 172.19.0.1/16 brd 172.19.255.255 scope global br-d4bf6d77f3cfvalid_lft forever preferred_lft forever

流量接着会进入filter表FORWARD链中的第二条规则:

-A FORWARD -j DOCKER-ISOLATION-STAGE-1

这表示流量进入FORWARD链后,所有的流量直接进入到DOCKER-ISOLATION-STAGE-1链。

再来看filter表中DOCKER-ISOLATION-STAGE-1链中的规则:

-A DOCKER-ISOLATION-STAGE-1 -i br-d4bf6d77f3cf ! -o br-d4bf6d77f3cf -j DOCKER-ISOLATION-STAGE-2
-A DOCKER-ISOLATION-STAGE-1 -i docker0 ! -o docker0 -j DOCKER-ISOLATION-STAGE-2
-A DOCKER-ISOLATION-STAGE-1 -j RETURN

第一条规则表示从接口br-d4bf6d77f3cf进入但是不从接口br-d4bf6d77f3cf出去的包会进入DOCKER-ISOLATION-STAGE-2链。
第二条规则和第一条规则类似,表示从接口docker0进入但是不从接口docker0出去的包会进入DOCKER-ISOLATION-STAGE-2链。
第三条规则表示再RETURN回原先的链,进行后续规则的匹配,进入这条规则可能有三种情况:

  1. 包从br-d4bf6d77f3cf进也从br-d4bf6d77f3cf出,表示同在my-network网络中
  2. 包从docker0进也从docker0出,表示同在默认的bridge网络中
  3. 包从主机的其他接口进入,不经过docker创建的接口

接下来看filter表中DOCKER-ISOLATION-STAGE-2链中的规则:

-A DOCKER-ISOLATION-STAGE-2 -o br-d4bf6d77f3cf -j DROP
-A DOCKER-ISOLATION-STAGE-2 -o docker0 -j DROP
-A DOCKER-ISOLATION-STAGE-2 -j RETURN

第一条规则表示从接口br-d4bf6d77f3cf出去的包直接丢弃,结合DOCKER-ISOLATION-STAGE-1链来看,就是让从接口docker0进入且从接口br-d4bf6d77f3cf出去的包的直接丢弃,使得docker0网络中的容器无法访问my-network网络中的容器。
第二条规则与第一条规则类似,表示从接口docker0出去的包直接丢弃,结合DOCKER-ISOLATION-STAGE-1链来看,就是让从接口br-d4bf6d77f3cf进入且从接口docker0出去的包的直接丢弃,使得br-d4bf6d77f3cf网络中的容器无法访问docker0网络中的容器。
第三条规则表示再RETURN回原先的链,进行后续规则的匹配,进入这条规则说明是docker内的容器访问外部网络(非Docker中的网络)。

Docker通过这两条链分为两个阶段对桥接网络进行了隔离,使得各个桥接网络直接无法通讯。

看到这里,你可能会问为什么要分两个阶段进行隔离?用一条链直接隔离行不行?

答案是行,一条链也能隔离,Docker很早的版本就是这样做的。

但是当时的实在超过30个network以后,就会导致Docker启动很慢。所以后来做了这个优化,将这部分的复杂度从O(N^2)降低到O(2N),Docker就不再会出现启动慢的情况了。

DOCKER链

最后我们来看看DOCKER链,这是Docker中使用最为频繁的一个链,也是规则最多的链,但它却很好理解。通常情况下,如果不小心删掉了这个链的内容,可能会导致容器的网络出现问题,手动修复下,或者重启Docker均可解决。

filter表和nat表中都存在DOCKER链。

什么样的包会进入到filter表的DOCKER链呢?

-A FORWARD -o br-d4bf6d77f3cf -j DOCKER
-A FORWARD -o docker0 -j DOCKER

FORWARD链中请求目标接口是docker0、br-d4bf6d77f3cf, 那么跳转到DOCKER链处理,也就是包转发到docker创建的bridge接口时就会进入DOCKER链。

什么样的包会进入到nat表的DOCKER链呢?

-A PREROUTING -m addrtype --dst-type LOCAL -j DOCKER
-A OUTPUT ! -d 127.0.0.0/8 -m addrtype --dst-type LOCAL -j DOCKER

第一条规则表示如果包进入时请求的目标地址是本机的地址, 那么将请求转到DOCKER链处理。
第二条规则表示如果包出去时请求的目标地址不匹配127.0.0.0/8, 并且目标地址属于本机地址, 那么将请求跳转到 DOCKER链处理。

这里我们启动一个容器,并进行端口映射,来看看会有哪些变化。

$ sudo docker container run --rm -d --name httpd -p 8080:80 httpd

之后再次执行iptables-save,对比当前的结果与上次的差别:

filter表中的DOCKER链增加如下一条规则:

-A DOCKER -d 172.17.0.3/32 ! -i docker0 -o docker0 -p tcp -m tcp --dport 80 -j ACCEPT

这条规则表示对目标地址是172.17.0.3/32且不是从docker0进入的但从docker0出去的,目标端口是80的TCP协议则接收。

nat表中增加如下两条规则:

-A POSTROUTING -s 172.17.0.3/32 -d 172.17.0.3/32 -p tcp -m tcp --dport 80 -j MASQUERADE
-A DOCKER ! -i docker0 -p tcp -m tcp --dport 8080 -j DNAT --to-destination 172.17.0.3:80

第一条规则表示为172.17.0.3上目标端口为80的流量执行MASQUERADE(SNAT)动作;
第二条规则表示在自定义的DOCKER链中,如果入口不是docker0并且目标端口是8080则进行DNAT动作,将目标地址转换为172.18.0.3:80。简单点来说,这条规则就是为我们提供了Docker容器端口转发的能力,将访问主机本地8080端口流量的目标地址转换为172.18.0.3:80。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/149784.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【机器学习】特征工程:特征选择、数据降维、PCA

各位同学好&#xff0c;今天我和大家分享一下python机器学习中的特征选择和数据降维。内容有&#xff1a; &#xff08;1&#xff09;过滤选择&#xff1b;&#xff08;2&#xff09;数据降维PCA&#xff1b;&#xff08;3&#xff09;sklearn实现 那我们开始吧。 一个数据集中…

es的优势

系列文章目录 提示&#xff1a;这里可以添加系列文章的所有文章的目录&#xff0c;目录需要自己手动添加 例如&#xff1a;第一章 Python 机器学习入门之pandas的使用 提示&#xff1a;写完文章后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目…

【论文精读】VOYAGER: An Open-Ended Embodied Agent with Large Language Models

Understanding LSTM Networks 前言Abstract1 Introduction2 Method2.1 Automatic Curriculum2.2 Skill Library2.3 Iterative Prompting Mechanism 3 Experiments3.1 Experimental Setup3.2 Baselines3.3 Evaluation Results3.4 Ablation Studies3.5 Multimodal Feedback from …

vscode 设置vue3 通用页面模板

实现效果&#xff1a; 实现步骤&#xff1a; 1.在项目的 .vscode 目录下创建一个名为 vue3.2.code-snippets 的文件&#xff0c;它是一个 JSON 格式的代码片段文件 {"Vue3.2快速生成模板": {"prefix": "Vue3.2","body": ["<…

RK3568 AD按键改成GPIO按键

authordaisy.skye的博客_CSDN博客-嵌入式,Qt,Linux领域博主 相对路径 kernel/arch/arm64/boot/dts/rockchip/ido-evb3568-v2b.dtsi 代码解析 linux,input-type <1>;//input类型 <EV_KEY>按键 即1 gpios <&gpio1 RK_PB2 GPIO_ACTIVE_HIGH>;//io脚地址…

深入浅出讲解python闭包

一、定义 在 Python 中&#xff0c;当一个函数内部定义的函数引用了外部函数的局部变量时&#xff0c;就形成了一个闭包。这个内部函数可以访问并修改外部函数的局部变量&#xff0c;而这些局部变量的状态会一直被保存在闭包中&#xff0c;即使外部函数已经执行完毕。 这种机…

springboot上传文件后显示权限不足

前言&#xff1a; 最近一个老项目迁移&#xff0c;原本一直好好的&#xff0c;迁移后上传文件的功能使用不正常&#xff0c;显示文件没有可读取权限&#xff0c;这个项目并不是我们开发和配置的&#xff0c;由第三方开发的&#xff0c;我们只是接手一下。 前端通过api上传文件…

深度学习人脸表情识别算法 - opencv python 机器视觉 计算机竞赛

文章目录 0 前言1 技术介绍1.1 技术概括1.2 目前表情识别实现技术 2 实现效果3 深度学习表情识别实现过程3.1 网络架构3.2 数据3.3 实现流程3.4 部分实现代码 4 最后 0 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 &#x1f6a9; 深度学习人脸表情识别系…

16位 (MCU) R7F101G6G3CSP、R7F101G6E3CSP、R7F101G6G2DSP、R7F101G6E2DSP是新一代RL78通用微控制器

产品描述 RL78/G24微控制器具有RL78系列MCU的最高处理性能&#xff0c;CPU工作频率高达48MHz&#xff0c;设有灵活的应用加速器 (FAA)。FAA是一款专门用于算法运算的协处理器&#xff0c;可以独立于CPU运行&#xff0c;提供更高处理能力。RL78/G24 MCU具有增强的模拟功能和大量…

SQL零基础入门教程,贼拉详细!贼拉简单! 速通数据库期末考!(九)

UNION ALL UNION ALL 用于合并两个或多个 SELECT 语句的结果。 请注意&#xff0c;UNION ALL 合并的每个 SELECT 语句必须是查询相同数量&#xff0c;相同数据类型的字段&#xff0c;且顺序也必须一致。另外结果集中的列名总是等于 UNION ALL 中第一个 SELECT 语句中的列名。 …

xlua源码分析(三)C#访问lua的映射

xlua源码分析&#xff08;三&#xff09;C#访问lua的映射 上一节我们主要分析了lua call C#的无wrap实现。同时我们在第一节里提到过&#xff0c;C#使用LuaTable类持有lua层的table&#xff0c;以及使用Action委托持有lua层的function。而在xlua的官方文档中&#xff0c;推荐使…

Vatee万腾科技创新之舟:Vatee数字化力量引领未来的独特路径

在数字化的大潮中&#xff0c;Vatee万腾如一艘科技创新之舟&#xff0c;在未来的海洋中翱翔。vatee万腾以强大的数字化力量为桨&#xff0c;引领着行业向着新的、独特的路径前行&#xff0c;塑造着数字时代的未来。 Vatee万腾不仅仅是一家科技公司&#xff0c;更是一艘创新之舟…

光伏拉晶厂RFID智能化生产工序管理

一、项目背景 随着全球能源短缺和气候变暖的挑战日益突显&#xff0c;清洁能源已成为国内能源发展的主要目标之一&#xff0c;作为清洁能源的重要组成部分&#xff0c;光伏行业在过去几十年中取得了巨大的发展&#xff0c;成为我国的战略性新兴产业之一。在智能制造的大环境下…

Linux:安装软件的两种方式rpm和yum

一、rpm方式 1、简单介绍 RPM是RedHat Package Manager的缩写&#xff0c;它是Linux上打包和安装的工具。通过rpm打包的文件扩展名是.RPM。这个安装包就类似Windows系统中的.exe文件。rpm工具实现Linux上软件的离线安装。 2、软件相关信息的查询命令 查询Linux系统上所有已…

IIC总线逻辑

一、 我们习以为常的IIC通常是什么样子&#xff1f; 在我们研发/应用工程师眼中&#xff0c;IIC的形象通常是如图这样的吧&#xff1f;&#xff08;你们说是不是&#xff1f;&#xff09; 是的&#xff0c;对于理想的硬件调程序&#xff0c;这个层…

HarmonyOS4.0系列——01、下载、安装、配置环境、搭建页面以及运行示例代码

HarmonyOS4.0应用开发 安装编辑器 这里安装windows版本为例 安装依赖 打开DevEco Studio 这八项全部打钩即可开始编写代码&#xff0c;如果存在x&#xff0c;需要安装正确的库即可 开发 点击Create Project 选择默认模板——next Model部分分为Stage和FA两个应用模型&…

【广州华锐互动】VR防溺水安全内容体验提高群众防溺水意识

在全球各地&#xff0c;溺水是导致儿童和青少年死亡的主要原因之一。据世界卫生组织的统计&#xff0c;全球每年有超过36万人因溺水而死亡&#xff0c;其中大部分是儿童和青少年。因此&#xff0c;提供有效的防溺水教育和培训至关重要。随着科技的发展&#xff0c;虚拟现实&…

数据库系统原理与实践 笔记 #9

文章目录 数据库系统原理与实践 笔记 #9存储管理与索引文件和记录的组织文件组织定长记录变长记录分槽的页结构文件中记录的组织顺序文件组织多表聚簇文件组织 数据库系统原理与实践 笔记 #9 存储管理与索引 文件和记录的组织 文件组织 数据库是以一系列文件的形式存储的。…

Hive调优

1.参数配置优化 设定Hive参数有三种方式&#xff1a; &#xff08;1&#xff09;配置Hive文件 当修改配置Hive文件的设定后&#xff0c;对本机启动的所有Hive进程都有效&#xff0c;因此配置是全局性的。 一般地&#xff0c;Hive的配置文件包括两部分&#xff1a; a&#xff…

【网络】OSI模型 与 TCP/IP模型 对比

一、OSI模型 OSI模型包含7个层次&#xff0c;从下到上分别是&#xff1a; 1. 物理层&#xff08;Physical Layer&#xff09; - 功能&#xff1a;处理与电子设备物理接口相关的细节&#xff08;如电压、引脚布局、同步&#xff0c;等等&#xff09;。 - 协议&#xff1a;以…