第14届蓝桥杯青少组python试题解析:23年5月省赛

选择题

T1. 执行以下代码,输出结果是()。

lst = "abc"
print(lst+lst)
  • abcabc
  • abc
  • lst+lst
  • abc+abc

T2. 执行以下代码,输出的结果是()。

age = {16,18,17}
print(type(sorted(age)))
  • <class 'set'>
  • <class 'int'>
  • <class 'str'>
  • <class 'list'>

sorted(iterable, cmp=None, key=None, reverse=False) 将返回一个新的 list,不会改变原来的可迭代对象。

T3. 导入random标准库,执行print(random.randrange(2,20,2))语句,可能输出的结果是()。

  • 2
  • 5
  • 13
  • 20

random.randrange ([start,] stop [,step])

  • 必须参数stop表示随机生成的范围上限(不包括上限
  • start表示随机生成的范围下限(包括下限
  • step表示随机生成数之间的间隔,默认是1。

T4. 下列选项哪一个是转为整数的函数()?

  • str()
  • int()
  • float
  • list()

T5. 以下关于Python中复数描述,错误的是()。

  • 复数可以看作二元有序浮点数(x,y)
  • 实部和虚部都是浮点数
  • 虚数部分的后缀可以是"j",也可以是"J"
  • 已知复数a,可以使用real获得虚数部分。

在Python中,复数类型用complex表示。它可以通过以下方式创建:

  • 直接指定实部和虚部:complex(real, imag),real是实数部分,imag是虚数部分。
  • 使用字符串:complex(string)

例如:

a = complex(3, 4) # 创建一个复数3+4j
a = complex('3+4j') # 创建一个复数3+4j

编程题

T1. N + N

问题描述

给定一个正整数 N N N,计算出 N + N N+N N+N的值。
例如: N = 4 N = 4 N=4 4 + 4 4+4 4+4的值为 8 8 8

输入描述

输入一个正整数 N N N

输出描述

输出 N + N N+N N+N的值

样例输入

4

样例输出

8

代码实现

n = int(input())
print(n + n)

T2. 字符

问题描述

给定一个只包含小写字母的字符串 S S S S S S长度 ≥ 3 ≥3 3),请输出字符串 S S S的第一个字符和最后一个字符。例如:
S ="abc" a b c abc abc的第一个字符为 a a a,最后一个字符为 c c c,故输出 a c ac ac

输入描述

输入一个只包含小写字母的字符串 S S S S S S长度 ≥ 3 ≥3 3)。

输出描述

输出字符串 S S S的第一个字符和最后一个字符,两个字符之间没有空格及其他字符

样例输入

abc

样例输出

ac

代码实现

s = input()
print(s[0] + s[-1])

T3. 数字币

问题描述

提示信息:合数指自然数中除了能被1和本身整除外,还能被其它正整数整除的数。例如 4 4 4 4 4 4除了能被 1 1 1 4 4 4整除,还可以被 2 2 2整除。

小明收藏了 N N N 2 ≤ N ≤ 25 2≤N≤25 2N25)个数字币,每个数字币上都有一个面值(面值可以重复)。从数字币中任选 K K K 2 ≤ K ≤ N 2≤K≤N 2KN)个,有多种选法,请将每次选择的数字币上的面值累加,然后解决以下两个问题:

  • 问题1:累加的和中有多少种不同的结果
  • 问题2:累加的和中有多少个不同的合数

例如: N = 5 N=5 N=5 K = 3 K=3 K=3 5 5 5个数字币上的面值分别为 2 、 1 、 4 、 5 、 3 2、1、4、5、3 21453,任选 3 3 3个数字币,有 10 10 10种选法,将每种选法上的面值累加: 2 + 1 + 4 = 7 、 2 + 1 + 5 = 8 、 2 + 1 + 3 = 6 、 2 + 4 + 5 = 11 、 2 + 4 + 3 = 9 、 2 + 5 + 3 = 10 、 1 + 4 + 5 = 10 、 1 + 4 + 3 = 8 、 1 + 5 + 3 = 9 、 4 + 5 + 3 = 12 2+1+4=7、2+1+5=8、2+1+3=6、2+4+5=11、2+4+3=9、2+5+3=10、1+4+5=10、1+4+3=8、1+5+3=9、4+5+3=12 2+1+4=72+1+5=82+1+3=62+4+5=112+4+3=92+5+3=101+4+5=101+4+3=81+5+3=94+5+3=12

其中累加的和中有 7 7 7种不同的结果,分别是 7 、 8 、 6 、 11 、 9 、 10 、 12 7、8、6、11、9、10、12 7861191012;累加的和中有 5 5 5个不同的合数,分别是 8 、 6 、 9 、 10 、 12 8、6、9、10、12 8691012

输入描述

第一行输入一个正整数 N N N 2 ≤ N ≤ 25 2≤N≤25 2N25),表示数字币的个数。
第二行输入 N N N个正整数( 1 ≤ 1≤ 1正整数 ≤ 1000 ≤1000 1000),表示数字币上的面值,正整数之间以一个英文逗号隔开。
第三行输入一个正整数 K K K 2 ≤ K ≤ N 2≤K≤N 2KN),表示所要选取的数字币个数。

输出描述

输出两个整数,分别表示累加的和中不同结果的个数以及累加的结果中不同合数的个数,两个整数之间以一个英文逗号隔开。

样例输入

5
2,1,4,5,3
3

样例输出

7,5

代码实现

n = int(input())
a = eval(input())
k = int(input())
d = {}
ans1, ans2 = 0, 0
b = [0] * n
# 检查x是否为合数
def check(x):i = 2while i * i <= x:if x % i == 0:return Truei += 1return False
def dfs(t, last, s):if t == k:global ans1, ans2# 如果字典中不存在sif s not in d:d[s] = 1ans1 += 1# 检查是否为合数if check(s):ans2 += 1return;for i in range(last + 1, n):dfs(t + 1, i, s + a[i])
dfs(0, -1, 0)
print('%d,%d' % (ans1, ans2))

T4. 杨辉三角

问题描述

提示信息:杨辉三角就是一个用数排列起来的三角形(如下图),杨辉三角规则如下:

  1. 每行第一个数和最后一个数都为 1 1 1,其它每个数等于它左上方和右上方的两数之和;
  2. n n n行有 n n n个数。
    在这里插入图片描述

注意:“列”指的是如图所标注的斜列。

小青对杨辉三角的特点和规律研究得很明白,现要考察你对杨辉三角的熟悉程度,首先告知你这是一个 N N N行的杨辉三角,然后又告知了两个数值 X X X Y Y Y X X X表示第几行, Y Y Y表示第几列),让你根据杨辉三角的特点和观察到的规律解决以下两个问题。

  • X X X行第 Y Y Y列对应的数是多少;
  • 求出 N N N行的杨辉三角中第 Y Y Y列中所有数的和。

例如: N = 5 N=5 N=5 5 5 5行的杨辉三角如下图。
在这里插入图片描述

X = 5 X=5 X=5 Y = 3 Y=3 Y=3,第 5 5 5行第 3 3 3列对应的数为 6 6 6;第 3 3 3列中所有数的和为 10 10 10 10 = 6 + 3 + 1 10 = 6 + 3 + 1 10=6+3+1)。

输入描述

第一行输入一个正整数 N N N 2 ≤ N ≤ 30 2≤N≤30 2N30),表示杨辉三角的行数
第二行输入两个正整数 X X X Y Y Y 1 ≤ Y ≤ X ≤ N 1≤Y≤X≤N 1YXN),分别表示第 X X X行和第 Y Y Y列,正整数之间以一个英文逗号隔开。

输出描述

输出两个整数,分别表示 N N N行的杨辉三角中第 X X X Y Y Y列对应的数,及第 Y Y Y列上所有数的和,两个整数之间以一个英文逗号隔开。

样例输入

5
5,3

样例输出

6,10

代码实现

n = int(input())
x, y = eval(input())
# 初始化二维列表
f = [[0] * (n + 1) for _ in range(n + 1)]
# 计算杨辉三角,行列的下标从1开始
for i in range(1, n + 1):for j in range(1, i + 1):if i == 1 or j == i:f[i][j] = 1else:f[i][j] = f[i - 1][j] + f[i - 1][j - 1]
ans1 = f[x][y]
ans2 = 0
for i in range(1, n + 1):ans2 += f[i][y];
print('%d,%d' % (ans1, ans2))

T5. 涂鸦

问题描述

工人砌了一面奇特的砖墙,该墙由 N N N列砖组成( 1 ≤ N ≤ 1 0 6 1≤N≤10^6 1N106),且每列砖的数量为 K i K_i Ki 1 ≤ K i ≤ 1 0 4 1≤K_i≤10^4 1Ki104,相邻两列砖之间无缝隙),每块砖的长宽高都为 1 1 1

小蓝为了美化这面墙,需要在这面墙中找到一块面积最大的矩形用于涂鸦,那么请你帮助小蓝找出最大矩形,并输出其面积。

例如: N = 6 N = 6 N=6,表示这面墙有 6 6 6列,每列砖的数量依次为 3 、 2 、 1 、 5 、 6 、 2 3、2、1、5、6、2 321562,如下图:
在这里插入图片描述
图中虚线部分是一块面积最大的矩形,其面积为 10 10 10

输入描述

第一行输入一个正整数 N N N 1 ≤ N ≤ 1 0 6 1≤N≤10^6 1N106),表示这面砖墙由几列砖组成

第二行输入 N N N个正整数 K i K_i Ki 1 ≤ K i ≤ 1 0 4 1≤K_i≤10^4 1Ki104),表示每列砖的数量,正整数之间以一个空格隔开。

输出描述

输出一个正整数,表示最大矩形的面积。

样例输入

6
3 2 1 5 6 2

样例输出

10

算法思想1(60分,暴力枚举)

矩形的面积等于列数 × \times ×相邻列的高度最小值。因此可以暴力枚举所有相邻列的组合,计算其面积,然后打擂台求最大值即可。

时间复杂度

尝试所有相邻列的组合需要分别枚举开始列和结束列,时间复杂度为 O ( n 2 ) O(n^2) O(n2)

代码实现
n = int(input())
a = list(map(int, input().split()))
ans = 0
# 枚举矩形的开始列
for i in range(n):# 枚举矩形的结束列for j in range(i, n):# 从i到j一共有j - i + 1列,这些列中高度的最小值为min(a[i : j + 1]ans = max(ans, (j - i + 1) * min(a[i : j + 1]))
print(ans)

算法思想2(100分,枚举 + 单调栈)

矩形的面积等于每列砖的数量 × \times × 与它左右相邻的且具有相同高度的列数。因此可以枚举每列砖的数量,第 i i i列来说,不妨设其砖的数量为 a i a_i ai

  • 向左找到第一个小于 a i a_i ai的位置 L i L_i Li
  • 向右找到第一个小于 a i a_i ai的位置 R i R_i Ri

此时以第 i i i列砖为高度的矩形的面积 = ( R i − L i − 1 ) × a i =(R_i - L_i-1)\times a_i =(RiLi1)×ai,那么只需要打擂台求最大值即可。

那么如何向左(向右)找到第一个小于 a i a_i ai的位置呢,可以使用单调栈的思想,以 O ( 1 ) O(1) O(1)的时间复杂度实现。

时间复杂度
  • 枚举每列砖的时间复杂度为 O ( n ) O(n) O(n)
  • 单调栈向左(向右)找到第一个小于 a i a_i ai的位置的时间复杂度为 O ( 1 ) O(1) O(1)

总的时间复杂度为 O ( n ) O(n) O(n)

代码实现
n = int(input())
a = list(map(int, input().split()))
L = [0] * n
R = [0] * n
# 单调栈查找左侧第一个小于a[i]的位置L[i]
stk = []
for i in range(n):while len(stk) != 0 and a[stk[-1]] >= a[i]:stk.pop()if len(stk) == 0: # 左侧没有比a[i]小的数L[i] = -1else:L[i] = stk[-1] # 栈顶就是左侧第一个比a[i]小的位置stk.append(i)
# 单调栈查找右侧第一个小于a[i]的位置R[i]
stk = []
for i in range(n - 1, -1, -1):while len(stk) != 0 and a[stk[-1]] >= a[i]:stk.pop()if len(stk) == 0: #右侧没有比a[i]小的数R[i] = nelse:R[i] = stk[-1] # 栈顶就是右侧第一个比a[i]小的位置stk.append(i)
ans = 0
for i in range(n):# (L, R)之间一共有R - L - 1列ans = max(ans, a[i] * (R[i] - L[i] - 1)) 
print(ans)

T6. 传送门(仅中、高级组)

问题描述

在一个神奇空间里有 N N N个房间,房间从 1 1 1 N N N编号,每个房间可能有一个或多个传送门,每个传送门都有一个编号,如果相同编号的传送门同时出现在多个房间中,表示这些房间可以互通。
给定两个房间的编号 A A A B B B,请找出从房间 A A A到达房间 B B B最少需要经过几个传送门。
例如: N = 3 N=3 N=3 3 3 3个房间中传送门的编号分别为:
房间 1 1 1 1 , 4 , 6 1,4,6 1,4,6
房间 2 2 2 2 , 3 , 4 , 8 2,3,4,8 2,3,4,8
房间 3 3 3 3 , 6 , 9 3,6,9 3,6,9
其中房间 1 1 1和房间 2 2 2互通,共用 4 4 4号传送门;房间 1 1 1和房间 3 3 3互通,共用 6 6 6号传送门;房间 2 2 2和房间 3 3 3互通,共用 3 3 3号传送门;当 A = 1 A=1 A=1 B = 2 B=2 B=2,从房间 1 1 1到达房间 2 2 2,共有两种路线:

  • 路线 1 1 1:从房间 1 1 1通过 4 4 4号传送门进入房间 2 2 2,共经过 1 1 1个传送门。如下图橙色路线所示。
  • 路线 2 2 2:从房间 1 1 1通过 6 6 6号传送门进入房间 3 3 3,再从房间 3 3 3通过 3 3 3号传送门进入房间 2 2 2,共经过 2 2 2个传送门;故从房间 1 1 1到达房间 2 2 2最少需要经过 1 1 1个传送门。如下图黑色路线所示。

在这里插入图片描述

输入描述

第一行输入一个正整数 N N N 2 ≤ N ≤ 20 2≤N≤20 2N20),表示房间数量。
接下来输入 N N N行,每行包含多个正整数( 1 ≤ 1≤ 1正整数 ≤ 100 ≤100 100),第 2 2 2行到第 N + 1 N+1 N+1行依次表示 1 1 1 N N N号房间内所有传送门的编号,正整数之间以一个英文逗号隔开。
最后一行输入两个正整数 A A A B B B 1 ≤ A ≤ N , 1 ≤ B ≤ N 1≤A≤N,1≤B≤N 1AN1BN,且 A ≠ B A≠B A=B),表示两个房间的编号,正整数之间以一个英文逗号隔开。

输出描述

输出一个整数,表示从房间 A A A到达房间 B B B最少需要经过几个传送门,如果房间 A A A不能到达房间 B B B,则输出 − 1 -1 1

样例输入

3
1,4,6
2,3,4,8
3,6,9
1,2

样例输出

1

算法思想

  • 首先,输入每个房间的传送门编号,可以计算出任意两个房间是否有传送门相连
  • 然后,可以通过BFS求到起点 A A A的最短路径。

代码实现

n = int(input())
a = []
for i in range(n):b = eval(input())a.append(b)
A, B = eval(input())# g数组存储两个房间是否有传送门
g = [[0] * n for _ in range(n)]for i in range(n):for j in range(i + 1, n):for x in a[i]:if x in a[j]:# 第i个房间和第j个房间有传送门g[i][j] = g[j][i] = 1break
# bfs求最短路
ans = 0
st = [0] * n
q = [] # 队列
q.append((A, 0)) # 将起点和到起点的距离入队
st[A] = 1 # 将起点标记为已访问
# 只要队列不空,bfs计算到起点的最短路径
while len(q) != 0:x, d = q.pop(0)if(x == B): # 如果到达终点ans = dbreakfor i in range(n):# 如果i点已访问,或者x到i之间没有传送门if st[i] == 1 or g[x][i] == 0:continueq.append((i, d + 1))
print(ans)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/149484.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C++基础从0到1入门编程(三)

系统学习C 方便自己日后复习&#xff0c;错误的地方希望积极指正 往期文章&#xff1a; C基础从0到1入门编程&#xff08;一&#xff09; C基础从0到1入门编程&#xff08;二&#xff09; 参考视频&#xff1a; 1.黑马程序员匠心之作|C教程从0到1入门编程,学习编程不再难 2.系统…

企业计算机服务器中了faust勒索病毒怎么办,faust勒索病毒解密文件恢复

网络技术的不断应用发展&#xff0c;为企业注入了新的生产运营方式&#xff0c;计算机服务器为企业的数据存储提供了便利&#xff0c;让企业的生产运营得到了有力保障&#xff0c;近期&#xff0c;云天数据恢复中心陆续接到很多企业的求助&#xff0c;企业的计算机服务器遭到了…

基于单片机设计的电子指南针(LSM303DLH模块(三轴磁场 + 三轴加速度)

一、前言 本项目是基于单片机设计的电子指南针&#xff0c;主要利用STC89C52作为主控芯片和LSM303DLH模块作为指南针模块。通过LCD1602液晶显示屏来展示检测到的指南针信息。 在日常生活中&#xff0c;指南针是一种非常实用的工具&#xff0c;可以帮助我们确定方向&#xff0…

人工智能-循环神经网络通过时间反向传播

到目前为止&#xff0c;我们已经反复提到像梯度爆炸或梯度消失&#xff0c; 以及需要对循环神经网络分离梯度。 例如&#xff0c;我们在序列上调用了detach函数。 为了能够快速构建模型并了解其工作原理&#xff0c; 上面所说的这些概念都没有得到充分的解释。 本节将更深入地探…

MTK Pump Express 快速充电原理分析

1 MTK PE 1.1 原理 在讲正文之前&#xff0c;我们先看一个例子。 对于一块电池&#xff0c;我们假设它的容量是6000mAh&#xff0c;并且标称电压是3.7V&#xff0c;换算成Wh(瓦时)为单位的值是22.3Wh(6000mAh*3.7V)&#xff1b;普通的充电器输出电压电流是5V2A(10W)&#xff0c…

纯CSS实现炫酷文本阴影效果

如图所示&#xff0c;这是一个文本阴影效果&#xff0c;阴影有多个颜色&#xff0c;鼠标悬停时文本阴影效果消失&#xff0c;文本回到正常的效果。让我们逐步分解代码&#xff0c;看看如何使用纯CSS实现这个效果的。 基于以上动图可以分析出以下是本次实现的主要几个功能点&am…

【软件工程师从0到1】- Java面向对象基础 (知识汇总)

前言 介绍&#xff1a;大家好啊&#xff0c;我是hitzaki辰。 社区&#xff1a;&#xff08;完全免费、欢迎加入&#xff09;日常打卡、学习交流、资源共享的知识星球。 自媒体&#xff1a;我会在b站/抖音更新视频讲解 或 一些纯技术外的分享&#xff0c;账号同名&#xff1a;hi…

QTcpSocket发送结构体的做法

作者&#xff1a;朱金灿 来源&#xff1a;clever101的专栏 为什么大多数人学不会人工智能编程&#xff1f;>>> QTcpSocket发送结构体其实很简单:使用QByteArray类对象进行封装发送&#xff0c;示例代码如下&#xff1a; /* 消息结构体 */ struct stMsg {int m_A…

CLIP浅谈

CLIP论文地址&#xff1a;Learning Transferable Visual Models From Natural Language Supervision CLIP代码地址&#xff1a;https://github.com/openai/CLIP 简介 CLIP是OpenAI在2021年2月发表的一篇文章&#xff0c;它的主要贡献有以下2点&#xff1a; 1&#xff09;将图…

无损音频播放软件 Colibri mac中文版特点介绍

Colibri for mac是一款轻量级的音频播放器软件。它具有简洁的界面设计和快速启动速度&#xff0c;能够提供流畅的音频播放体验。Colibri支持多种常见的音频格式&#xff0c;包括MP3、FLAC、ALAC、AAC等。它还提供了一些实用的功能&#xff0c;如音频均衡器、音频增益控制、播放…

酒糟废水处理设备有哪些

酒糟废水处理设备有以下几种&#xff1a; 格栅&#xff1a;用于拦截大颗粒悬浮物&#xff0c;以保护后续处理设备。调节池&#xff1a;用于调节水质和水量&#xff0c;使废水在处理过程中保持稳定。混凝反应池&#xff1a;通过添加混凝剂&#xff0c;使废水中的小颗粒悬浮物凝…

小程序开通电子发票

总目录 文章目录 总目录前言结语 前言 随着人工智能的不断发展&#xff0c;机器学习这门技术也越来越重要&#xff0c;很多人都开启了学习机器学习&#xff0c;本文就介绍了机器学习的基础内容。 首先登录商户号&#xff1a;https://pay.weixin.qq.com/index.php/core/home/lo…

探索SPI:深入理解原理、源码与应用场景

文章目录 一、初步认识1、概念2、工作原理3、作用场景 二、源码分析1、ServiceLoader结构2、相关字段3、核心方法 三、案例connector连接器小案例1、新建SPI项目2、创建扩展实现项目1-MongoDB3、创建扩展实现项目2-Oracle4、测试 Spring应用1、创建study工程2、创建forlan-test…

uniapp Android如何授权打开系统蓝牙Bluetooth?

uniapp Android如何授权打开系统蓝牙&#xff1f; 使用uniapp开发蓝牙项目过程中&#xff0c;涉及到检测手机系统蓝牙是否打开功能&#xff0c;这里介绍Android&#xff0c;iOS暂时没有找到优方法。朋友们如果有好的方案&#xff0c;欢迎评论分享~ 文章目录 uniapp Android如何…

AWS云服务器EC2实例实现ByConity快速部署

1. 前言 亚马逊是全球最大的在线零售商和云计算服务提供商。AWS云服务器在全球范围内都备受推崇&#xff0c;被众多业内人士誉为“云计算服务的行业标准”。在国内&#xff0c;亚马逊AWS也以其卓越的性能和服务满足了众多用户的需求&#xff0c;拥有着较高的市场份额和竞争力。…

华为笔记本MateBook D 14 2021款锐龙版R7集显非触屏(NbM-WFP9)原装出厂Windows10-20H2系统

链接&#xff1a;https://pan.baidu.com/s/13Kyy95GME-asli4woNN_ww?pwdbqa8 提取码&#xff1a;bqa8 HUAWEI华为MateBookD14原厂Win10系统自带所有驱动、出厂主题壁纸、系统属性专属LOGO标志、Office办公软件、华为电脑管家等预装程序

05_SHELL编程之文本处理工具SED

typora-root-url: pictures课程目标 掌握sed的基本语法结构 熟悉sed常用的命令&#xff0c;如打印p&#xff0c;删除d&#xff0c;插入i等 Windows&#xff1a;​ Linux&#xff1a; vim vi gedit nano emacs 一、sed介绍 1. sed的工作流程 首先sed把当前正在处理的行保存…

el-table中el-popover失效问题

场景&#xff1a;先有一个数据表格&#xff0c;右侧操作栏为固定列&#xff0c;另外有一个字段使用了el-popover来点击弹出框来修改值&#xff0c;发现不好用&#xff0c;点击后无法显示弹出框&#xff0c;但当没有操作栏权限时却意外的生效了。 这种问题真是不常见&#xff0…

设置指定时间之前的时间不可选

1、el-date-picker设置今天之前的日期不可选 <el-date-picker style"width: 100%" type"date" v-model"form.resetDate" align"right" :value-format"yyyy-MM-dd" placeholder"选择调整日期":disabled"t…

场景交互与场景漫游-路径漫游(7)

路径漫游 按照指定的路径进行漫游对一个演示是非常重要的。在osgViewer中&#xff0c;当第一次按下小写字母“z”时&#xff0c;开始记录动画路径;待动画录制完毕&#xff0c;按下大写字母“Z”&#xff0c;保存动画路径文件;使用osgViewer读取该动画路径文件时&#xff0c;会回…