Linux | C语言中volatile关键字的理解

目录

前言

一、代码引入

二、现象解释

三、具体引用


前言

        本章主要讲解介绍volatile关键的作用与使用场合;深刻理解volatile关键字;本文你需要有信号相关的基础知识;

Linux | 信号-CSDN博客

一、代码引入

        首先,我们来查看下面这段代码;

#include <iostream>
#include <signal.h>// 定义全局变量
int flag = 1;void handler(int signum)
{(void)(signum); // 防止编译器警告std::cout << "change before flag:" << flag << std::endl;flag = 0;std::cout << "change after flag:" << flag << std::endl;
}int main()
{// 对2号信号捕捉signal(SIGINT, handler);// 死循环while(flag);std::cout << "run here..." << std::endl;return 0;
}

        当我们发送2号信号时,全局变量flag被改为了0,然后循环条件不满足,打印 run here 后退出;我们运行查看结果是否满足我们预期结果;如下所示;

        第一个红色框起来的是我们编译程序所用指令;第二个红色框起来的是当我们按下 ctrl + c 发送2号信号时,程序如我么预期所料;

        接下来,我们来介绍以下 gcc/g++ 的几个编译选项;如下图所示;

        -O1、-O2、-O3分别为编译时三个不同等级的优化,其中优化程度由低到高,我们选择最高等级,再次编译运行代码;如下所示;

        神奇的一幕发生了,我们发现我们无论按多少次 ctrl + c 都无法退出程序,我们发送2号信号,也被处理了,我们的全局变量flag不是被置为0了吗?为什么还是没有办法退出while循环呢?下面我们来仔细讲解这个神奇现象;

二、现象解释

        实际上,这就是跟我们的编译器优化有关,我们把视角拉到代码中;如下图所示;

        我们的while循环判断分为以上三个步骤,而当我们编译时对代码采用 O3 级别的优化时,我们的编译器检测到循环中没有对全局变量flag进行修改,因此直接将上面的步骤优化成了如下所示;

        故即使我们发送2号信号将内存中的flag更改,但是判断时时候,依旧直接判断寄存器中flag的那个值;所以才会看到上述那种神奇现象;

三、具体引用

        我们本文的主角volatile关键字就是为了防止这种编译器过度优化的现象,我们可以在定义flag变量的前面加上一个 volatile关键字,这样可以防止我们的变量flag参与被编译器编译的代码过度优化;

#include <iostream>
#include <signal.h>// 定义全局变量(增加volatile关键字)
volatile int flag = 1;void handler(int signum)
{(void)(signum); // 防止编译器警告std::cout << "change before flag:" << flag << std::endl;flag = 0;std::cout << "change after flag:" << flag << std::endl;
}int main()
{// 对2号信号捕捉signal(SIGINT, handler);// 死循环while(flag);std::cout << "run here..." << std::endl;return 0;
}

        代码几乎完全相同,就加入了一个volatile关键字,避免了这种编译器过度优化现象;

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/149096.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

基于C#实现最长公共子序列

一、作用 最长公共子序列的问题常用于解决字符串的相似度&#xff0c;是一个非常实用的算法&#xff0c;作为码农&#xff0c;此算法是我们的必备基本功。 二、概念 举个例子&#xff0c;cnblogs 这个字符串中子序列有多少个呢&#xff1f;很显然有 27 个&#xff0c;比如其…

分发糖果(贪心算法)

题目描述 n 个孩子站成一排。给你一个整数数组 ratings 表示每个孩子的评分。 你需要按照以下要求&#xff0c;给这些孩子分发糖果&#xff1a; 每个孩子至少分配到 1 个糖果。相邻两个孩子评分更高的孩子会获得更多的糖果。 请你给每个孩子分发糖果&#xff0c;计算并返回…

(二)Pytorch快速搭建神经网络模型实现气温预测回归(代码+详细注解)

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 前言一、数据集二、导入数据以及展示部分1.导入数据集以及对数据集进行处理2.展示数据&#xff08;看看就好&#xff09; 三&#xff08;1&#xff09;、搭建网络进…

004 OpenCV akaze特征点检测匹配

目录 一、环境 二、akaze特征点算法 2.1、基本原理 2.2、实现过程 2.3、实际应用 2.4、优点与不足 三、代码 3.1、数据准备 3.2、完整代码 一、环境 本文使用环境为&#xff1a; Windows10Python 3.9.17opencv-python 4.8.0.74 二、akaze特征点算法 特征点检测算法…

【数字图像处理】Gamma 变换

在数字图像处理中&#xff0c;Gamma 变换是一种重要的灰度变换方法&#xff0c;可以用于图像增强与 Gamma 校正。本文主要介绍数字图像 Gamma 变换的基本原理&#xff0c;并记录在紫光同创 PGL22G FPGA 平台的布署与实现过程。 目录 1. Gamma 变换原理 2. FPGA 布署与实现 2…

JSP 四大域对象

我们来说说JSP的四大域对象 首先 我们要了解他们是四种保存范围 第一种 是 Page范围 只作用于当前界面 只要页面跳转了 其他页面就拿不到了 第二种 request范围 在一次请求中有效 就是 我们服务端指向某个界面 并传递数据给他 那么 如果你是客户端跳转就不生效了 第三种 sessi…

经典ctf ping题目详解 青少年CTF-WEB-PingMe02

题目环境&#xff1a; 根据题目名称可知 这是一道CTF-WEB方向常考的知识点&#xff1a;ping地址 随便ping一个地址查看接受的数据包?ip0.0.0.0 有回显数据&#xff0c;尝试列出目录文件 堆叠命令使用’;作为命令之间的连接符&#xff0c;当上一个命令完成后&#xff0c;继续执…

深度学习二维码识别 计算机竞赛

文章目录 0 前言2 二维码基础概念2.1 二维码介绍2.2 QRCode2.3 QRCode 特点 3 机器视觉二维码识别技术3.1 二维码的识别流程3.2 二维码定位3.3 常用的扫描方法 4 深度学习二维码识别4.1 部分关键代码 5 测试结果6 最后 0 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天…

windows中运行项目中.sh和kaggle安装与配置

在git bash中运行 命令如下&#xff1a; bash download_data.sh 或者 ./download_data.sh如果使用kaggle的数据集&#xff0c;会要求输入用户名和API。 API在这个文件里面&#xff0c;复制过来即可。 安装kaggle pip install kaggle去kaggle官网&#xff0c;点击这里&…

[一周AI简讯]OpenAI宫斗;微软Bing Chat更名Copilot;Youtube测试音乐AI

OpenAI宫斗&#xff0c;奥特曼被解雇&#xff0c;董事会内讧 Sam Altman被解雇&#xff0c;不再担任CEO&#xff0c;董事会的理由是奥特曼在与董事会的沟通中始终不坦诚&#xff0c;阻碍了董事会履行职责的能力。原首席技术官Mira Murati担任新CEO。OpenAI宫斗剧远未结束&…

【数据结构】图的简介(图的逻辑结构)

一.引例&#xff08;哥尼斯堡七桥问题&#xff09; 哥尼斯堡七桥问题是指在哥尼斯堡市&#xff08;今属俄罗斯&#xff09;的普雷格尔河&#xff08;Pregel River&#xff09;中&#xff0c;是否可以走遍每座桥一次且仅一次&#xff0c;最后回到起点的问题。这个问题被认为是图…

达梦数据库常用参数查询

字符集 字符是各种文字和符号的统称&#xff0c;包括各个国家文字、标点符号、表情、数字等等。 字符集 就是一系列字符的集合。字符集的种类较多&#xff0c;每个字符集可以表示的字符范围通常不同&#xff0c;就比如说有些字符集是无法表示汉字的。 常见的字符集有 ASCII、G…

开发知识点-前端-webpack

webpack技术笔记 一、 介绍二、 下载使用 一、 介绍 Webpack是一个现代 JavaScript 应用程序的静态模块打包器 打包&#xff1a;可以把js、css等资源按模块的方式进行处理然后再统一打包输出 静态&#xff1a;最终产出的静态资源都可以直接部署到静态资源服务器上进行使用 模…

C#开发的OpenRA游戏之属性QuantizeFacingsFromSequence(7)

C#开发的OpenRA游戏之属性QuantizeFacingsFromSequence(7) 前面分析了身体的方向,在这里继续QuantizeFacingsFromSequence属性,这个属性就是通过序列定义文件里获取身体的方向。 根据前面分析可知,同样有一个信息类QuantizeFacingsFromSequenceInfo: [Desc("Deriv…

组件插槽,生命周期,轮播图组件的封装,自定义指令的封装等详解以及axios的卖座案例

3.组件插槽 3-1组件插槽 注意 插槽内容可以访问到父组件的数据作用域,因为插槽内容本身就是在父组件模版中定义的 插槽内容无法访问子组件的数据.vue模版中的表达式只能访问其定义时所处的作用域,这和JavaScript的词法作用域是一致的,换言之: 父组件模版的表达式只能访问父组…

金属压块液压打包机比例阀放大器

液压打包机是机电一体化产品&#xff0c;主要由机械系统、液压控制系统、上料系统与动力系统等组成。整个打包过程由压包、回程、提箱、转箱、出包上行、出包下行、接包等辅助时间组成。市场上液压打包机主要分为卧式与立式两种&#xff0c;立式废纸打包机的体积比较小&#xf…

CI/CD -gitlab

目录 一、常用命令 二、部署 一、常用命令 官网&#xff1a;https://about.gitlab.com/install/ gitlab-ctl start # 启动所有 gitlab 组件 gitlab-ctl stop # 停止所有 gitlab 组件 gitlab-ctl restart # 重启所有 gitlab 组件 gitlab-ctl statu…

Deque继承ArrayDeque和继承LinkedList区别在哪里

在Java中&#xff0c;ArrayDeque和LinkedList都是Deque接口的实现类&#xff0c;但它们的内部实现和性能特性有一些不同。 ArrayDeque&#xff1a; 内部实现&#xff1a;ArrayDeque使用动态数组&#xff08;resizable array&#xff09;来实现&#xff0c;它允许在两端高效地进…

大白话解释什么类加载机制

大家好&#xff0c;我是伍六七。 今天我们来聊聊一个 Java 面试必考基础题目&#xff1a;类加载机制和双亲委派机制。 Java 类的加载机制是 Java 虚拟机&#xff08;JVM&#xff09;中类加载&#xff08;Class Loading&#xff09;和链接&#xff08;Linking&#xff09;的过…

LeetCode27.移除元素(暴力法、快慢指针法)

每日一题&#xff1a;LeetCode27.移除元素 1.问题描述2.解题思路3.代码 1.问题描述 问题描述&#xff1a;给你一个数组 nums 和一个值 val&#xff0c;你需要 原地 移除所有数值等于 val 的元素&#xff0c;并返回移除后数组的新长度。不要使用额外的数组空间&#xff0c;你必…