基于金鹰算法优化概率神经网络PNN的分类预测 - 附代码

基于金鹰算法优化概率神经网络PNN的分类预测 - 附代码

文章目录

  • 基于金鹰算法优化概率神经网络PNN的分类预测 - 附代码
    • 1.PNN网络概述
    • 2.变压器故障诊街系统相关背景
      • 2.1 模型建立
    • 3.基于金鹰优化的PNN网络
    • 5.测试结果
    • 6.参考文献
    • 7.Matlab代码

摘要:针对PNN神经网络的光滑因子选择问题,利用金鹰算法优化PNN神经网络的光滑因子的选择,并应用于变压器故障诊断。

1.PNN网络概述

概率神经网络( probabilistic neural networks , PNN )是 D. F. Specht 博士在 1 989 年首先提出的,是一种基于 Bayes 分类规则与 Parzen窗的概率密度面数估计方法发展而来的并行算 法。它是一类结胸简单、训练简洁、应用广泛的人工神经网络 。在实际应用中,尤其是在解决分类问题的应用中, PNN 的优势在于用线性学习算法来完成非线性学 习算法所傲的工作,同 时保持非线性算法的高精度等特性;这种网络对应的权值就是模式样本的分布,网络不需要训练,因而能够满足训练上实时处理的要求。

PNN 网络是由径向基函数网络发展而来的一种前馈型神经网络,其理论依据是贝叶斯最小风险准则(即贝叶斯决策理论), PNN作为径向基网络的一种,适合于模式分类。当分布密度 SPREAD 的值接近于 0 时,它构成最邻分类器; 当 SPREAD 的值较大时,它构成对几个训练样本的临近分类器 。 PNN 的层次模型,由输入层、模式层、求和层、输出层共 4 层组成 , 其基本结构如图 1 所示。
f ( X , w i ) = e x p [ − ( X − w i ) T ( X − W i ) / 2 δ ] (1) f(X,w_i)=exp[-(X-w_i)^T(X-W_i)/2\delta]\tag{1} f(X,wi)=exp[(Xwi)T(XWi)/2δ](1)
式中, w i w_i wi为输入层到模式层连接的权值 ; δ \delta δ为平滑因子,它对分类起着至关重要的作用。第 3 层是求和层,是将属于某类的概率累计 ,按式(1)计算 ,从而得到故障模式的估计概率密度函数。每一类只有一个求和层单元,求和层单元与只属于自己类的模式层单元相连接,而与模式层中的其他单元没有连接。因此求和层单元简单地将属于自己类的模式层单元 的输出相加,而与属于其他类别的模式层单元的输出无关。求和层单元的输出与各类基于内 核的概率密度的估计成比例,通过输出层的归一化处理 , 就能得到各类的概率估计。网络的输 出决策层由简单的阔值辨别器组成,其作用是在各个故障模式的估计概率密度中选择一个具 有最大后验概率密度的神经元作为整个系统的输出。输出层神经元是一种竞争神经元,每个神经元分别对应于一个数据类型即故障模式,输出层神经元个数等于训练样本数据的种类个 数,它接收从求和层输出的各类概率密度函数,概率密度函数最大的那个神经元输出为 1 ,即 所对应的那一类为待识别的样本模式类别,其他神经元的输出全为 0 。

图1.PNN网络结构

2.变压器故障诊街系统相关背景

运行中的变压器发生不同程度的故障时,会产生异常现象或信息。故障分析就是搜集变压器的异常现象或信息,根据这些现象或信息进行分析 ,从而判断故障的类型 、严重程度和故障部位 。 因此 , 变压器故障诊断的目的首先是准确判断运行设备当前处于正常状态还是异常状态。若变压器处于异常状态有故障,则判断故障的性质、类型和原因 。 如是绝缘故障、过热故障还是机械故障。若是绝缘故障,则是绝缘老化 、 受潮,还是放电性故障 ;若是放电性故障又 是哪种类型的放电等。变压器故障诊断还要根据故障信息或根据信息处理结果,预测故障的可能发展即对故障的严重程度、发展趋势做出诊断;提出控制故障的措施,防止和消除故障;提出设备维修的合理方法和相应的反事故措施;对设备的设计、制造、装配等提出改进意见,为设备现代化管理提供科学依据和建议。

2.1 模型建立

本案例在对油中溶解气体分 析法进行深入分析后,以改良三比值法为基础,建立基于概率神经网络的故障诊断模型。案例数据中的 data. mat 是 33 × 4 维的矩阵,前3列为改良三比值法数值,第 4 列为分类的输出,也就是故障的类别 。 使用前 23 个样本作为 PNN 训练样本,后10个样本作为验证样本 。

3.基于金鹰优化的PNN网络

金鹰算法原理请参考:https://blog.csdn.net/u011835903/article/details/121209371

利用金鹰算法对PNN网络的光滑因子进行优化。适应度函数设计为训练集与测试集的分类错误率:
f i t n e s s = a r g m i n { T r a i n E r r o r R a t e + P r e d i c t E r r o r R a t e } (2) fitness = argmin\{TrainErrorRate + PredictErrorRate\}\tag{2} fitness=argmin{TrainErrorRate+PredictErrorRate}(2)

适应度函数表明,如果网络的分类错误率越低越好。

5.测试结果

金鹰参数设置如下:

%% 金鹰参数
pop=20; %种群数量
Max_iteration=20; %  设定最大迭代次数
dim = 1;%维度,即权值与阈值的个数
lb = 0.01;%下边界
ub = 5;%上边界

在这里插入图片描述
在这里插入图片描述

从结果来看,金鹰-pnn能够获得好的分类结果。

6.参考文献

书籍《MATLAB神经网络43个案例分析》,PNN原理部分均来自该书籍

7.Matlab代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/147902.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

使用Qt实现多人聊天工作室

目录 1、项目背景 2、技术分析 3、架构设计 3、1 服务器架构 3.1.1 模块划分 3.1.2 模块之间的交互 3、2 客户端架构 3.2.1 模块划分 3.2.2 模块之间交互 4、实现过程 4、1 功能实现 4.1.1 用户登录注册功能​编辑 4.1.2 用户主界面功能 4、2 设计实现 4.2.1 登录…

关于Flume-Kafka-Flume的模式进行数据采集操作

测试是否连接成功: 在主节点flume目录下输入命令: bin/flume-ng agent -n a1 -c conf/ -f job/file_to_kafka.conf -Dflume.root.loggerinfo,console # 这个file_to_kafka.conf文件就是我们的配置文件 然后在另一台节点输入命令进行消费数据: kafka-cons…

核—幂零分解

若向量空间 V \mathcal V V存在子空间 X \mathcal X X与 Y \mathcal Y Y,当 X Y V X ∩ Y 0 \mathcal {X\text{}Y\text{}V}\\ \mathcal {X}\cap \mathcal {Y}0 XYVX∩Y0 时称子空间 X \mathcal X X与 Y \mathcal Y Y是完备的,其中记为 X ⊕ Y V \ma…

SQL INSERT INTO 语句详解:插入新记录、多行插入和自增字段

SQL INSERT INTO 语句用于在表中插入新记录。 INSERT INTO 语法 可以以两种方式编写INSERT INTO语句: 指定要插入的列名和值: INSERT INTO 表名 (列1, 列2, 列3, ...) VALUES (值1, 值2, 值3, ...);如果要为表的所有列添加值,则无需在SQL…

每日OJ题_算法_双指针_力扣283. 移动零+力扣1089. 复写零

力扣283. 移动零 283. 移动零 - 力扣(LeetCode) 难度 简单 给定一个数组 nums,编写一个函数将所有 0 移动到数组的末尾,同时保持非零元素的相对顺序。 请注意 ,必须在不复制数组的情况下原地对数组进行操作。 示例…

java每日一记 —— 第一次研究注解

注解学习的小总结 1.万事开头难:什么是注解2.java的注解到底有什么用?3.元注解3.1.Target3.2.Retention3.3.Documented3.4.Inherited3.5.Repeatable 4.自定义注解使用4.1.定义注解4.2.使用注解4.3.获取注解的类容 本篇代码在jdk11中测试通过 1.在写这篇文…

在MySQL中创建新的数据库,可以使用命令,也可以通过MySQL工作台

摘要:在本教程中,你将学习如何使用MySQL CREATE DATABASE语句在MySQL数据库服务器上创建新数据库。 MySQL CREATE DATABASE语句简介 要在MySQL中创建新数据库,可以使用CREATE DATABASE语句。以下说明了CREATE DATABASE语句的基本语法: CREATE DATABASE [IF NOT EXISTS] …

超详细vue3选项式父子组件传值

一、问题背景 最近遇到了一个情景: 子组件干完事情,需要对父组件的变量进行更新,因为父组件将该变量传递给子组件,但是不会双向绑定,这时候我们就需要传值或者触发回调去解决这个问题 我们将分为两个部分 1.父组件传…

力扣hot100 两数之和 哈希表

&#x1f468;‍&#x1f3eb; 力扣 两数之和 &#x1f60b; 思路 在一个数组中如何快速找到某一个数的互补数&#xff1a;哈希表 O(1)实现⭐ AC code class Solution {public int[] twoSum(int[] nums, int target){HashMap<Integer, Integer> map new HashMap<&g…

【机器学习12】集成学习

1 集成学习分类 1.1 Boosting 训练基分类器时采用串行的方式&#xff0c; 各个基分类器之间有依赖。每一层在训练的时候&#xff0c; 对前一层基分类器分错的样本&#xff0c; 给予更高的权重。 测试时&#xff0c; 根据各层分类器的结果的加权得到最终结果。 1.2 Bagging …

基于世界杯算法优化概率神经网络PNN的分类预测 - 附代码

基于世界杯算法优化概率神经网络PNN的分类预测 - 附代码 文章目录 基于世界杯算法优化概率神经网络PNN的分类预测 - 附代码1.PNN网络概述2.变压器故障诊街系统相关背景2.1 模型建立 3.基于世界杯优化的PNN网络5.测试结果6.参考文献7.Matlab代码 摘要&#xff1a;针对PNN神经网络…

Docker 笔记(二)--镜像

Docker 笔记&#xff08;二&#xff09;–镜像 记录Docker 安装操作记录&#xff0c;便于查询。 参考 链接: Docker 入门到实战教程(三)镜像和容器链接: docker中daemon.json各配置详解链接: docker容器/etc/docker/daemon.json配置文件详解链接: docker官方文档 环境 Cen…

python+appium+pytest自动化测试-参数化设置

来自APP Android端自动化测试初学者的笔记&#xff0c;写的不对的地方大家多多指教哦。&#xff08;所有内容均以微博V10.11.2版本作为例子&#xff09; 在自动化测试用例执行过程中&#xff0c;经常出现执行相同的用例&#xff0c;但传入不同的参数&#xff0c;导致我们需要重…

IntelliJ IDEA 2023 v2023.2.5

IntelliJ IDEA 2023是一款功能强大的集成开发环境&#xff08;IDE&#xff09;&#xff0c;为开发人员提供了许多特色功能&#xff0c;以下是其特色介绍&#xff1a; 新增语言支持&#xff1a;IntelliJ IDEA 2023新增对多种编程语言的支持&#xff0c;包括Kotlin、TypeScript、…

基于寄生捕食算法优化概率神经网络PNN的分类预测 - 附代码

基于寄生捕食算法优化概率神经网络PNN的分类预测 - 附代码 文章目录 基于寄生捕食算法优化概率神经网络PNN的分类预测 - 附代码1.PNN网络概述2.变压器故障诊街系统相关背景2.1 模型建立 3.基于寄生捕食优化的PNN网络5.测试结果6.参考文献7.Matlab代码 摘要&#xff1a;针对PNN神…

Python正则表达式学习笔记(入门)

1. 介绍 正则表达式是一种强大的模式匹配工具&#xff0c;用于处理文本数据。在Python中&#xff0c;我们使用re模块来操作正则表达式。 2. 基本语法 建议先看 "5. re模块函数"了解search和match的区别"和 2.3 特殊字符转义"了解如何应对特殊符号 2.1 字…

MATLAB与Excel的数据交互

准备阶段 clear all % 添加Excel函数 try Excel=actxGetRunningServer(Excel.Application); catch Excel=actxserver(Excel.application); end % 设置Excel可见 Excel.visible=1; 插入数据 % % 激活eSheet1 % eSheet1.Activate; % 或者 % Activate(eSheet1); % % 打开…

js:react使用zustand实现状态管理

文档 https://www.npmjs.com/package/zustandhttps://github.com/pmndrs/zustandhttps://docs.pmnd.rs/zustand/getting-started/introduction 安装 npm install zustand示例 定义store store/index.js import { create } from "zustand";export const useCount…

【漏洞复现】浙大恩特CRM文件上传0day

漏洞描述 浙大恩特客户资源管理系统任意文件上传漏洞 免责声明 技术文章仅供参考,任何个人和组织使用网络应当遵守宪法法律,遵守公共秩序,尊重社会公德,不得利用网络从事危害国家安全、荣誉和利益,未经授权请勿利用文章中的技术资料对任何计算机系统进行入侵操作。利用…

C 语言 gets()和puts()

C 语言 gets()和puts() gets()和puts()在头文件stdio.h中声明。这两个函数用于字符串的输入/输出操作。 C gets()函数 gets()函数使用户可以输入一些字符&#xff0c;然后按Enter键。 用户输入的所有字符都存储在字符数组中。 空字符将添加到数组以使其成为字符串。 gets()允…